Tìm n biết:
x( x + 3) + 3x + 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>\(\left(x^3-4x^2\right)+\left(x^2-4x\right)+\left(5x-20\right)=0\)
<=>\(x^2\left(x-4\right)+x\left(x-4\right)+5\left(x-4\right)=0\)
<=>\(\left(x^2+x+5\right)\left(x-4\right)=0\)
Vì \(x^2+x+5>0\)=>x-4=0
<=>x=4
\(a,\Rightarrow x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x-x+3\right)=0\\ \Rightarrow3\left(x+3\right)=0\Rightarrow x=-3\\ b,A:B=\left(2x^2-x+4x-2\right):\left(2x-1\right)\\ =\left[x\left(2x-1\right)+2\left(2x-1\right)\right]:\left(2x-1\right)\\ =x+2\)
a) ĐK : x khác 2/3 ; x khác 0
\(\frac{x+5}{3x-2}=\frac{A}{x\left(3x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+5\right)}{x\left(3x-2\right)}=\frac{A}{x\left(3x-2\right)}\)
\(\Leftrightarrow A=x^2+5x\)
b) \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)
\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\frac{2\left(2-x\right)}{\left(x+2\right)}\)
\(=\frac{-5}{2}\)
x+2x+......+10x=-165
=>x.(1+2+.......+10)=-165
=>x.55=-165
=>x=-165:55
=>x=-3
x+2x+3x+...+10x = -165
x.(1 + 2 + 3 +...+10)= -165
x.55 = -165
x = -165:55
x = -3
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
Bạn đúng 1 phần, vì đây là 2x2 và y2 nên nó sẽ có 2 trường hợp!
\(\dfrac{x}{3}\)=\(\dfrac{y}{6}\)=\(\dfrac{2x^2}{18}\)=\(\dfrac{y^2}{36}\)=\(\dfrac{2x^2-y^2}{18-36}\)=\(\dfrac{-8}{-18}\) =\(\dfrac{4}{9}\)
=>TH1: \(\dfrac{4}{9}\) ⇒\(\left\{{}\begin{matrix}\dfrac{4}{3}\\\dfrac{8}{3}\end{matrix}\right.\)
=>TH2: \(\dfrac{-4}{9}\)⇒\(\left\{{}\begin{matrix}\dfrac{-4}{3}\\\dfrac{-8}{3}\end{matrix}\right.\)
Em tách ra thành:
x(1+3+5+...+2021)-x(2+4+...+2020)=2022.
Sau đó giải bình thường.
Chúc em học tốt!
x+2x+3x+...+100x=5500
5500=((1+100)*50)x
=5050
bạn sai đề
x( x + 3) + 3x + 8
\(x\left(x+3\right)+x+2x+8=0\)
\(x\left(x+4\right)+2\left(x+4\right)=0\)
\(\left(x+2\right).\left(x+4\right)=0\)
TH1:
\(x+2=0\)
\(x=0-2\)
\(x=-2\)
TH2:
\(x+4=0\)
\(x=0-4\)
\(x=-4\)
Vậy \(x\in\left\{-2;-4\right\}\)