K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số)

Tổng của tử số của A là:

       (101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:

      101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là :

     (101-100).50+1=51.

         Vậy

            A=5151:51=101

28 tháng 7 2016

a)101+100+...+3+2+1

số số hạng:(101-1):1+1=101

tổng: (101+1)*101:2=5151

28 tháng 7 2016

Câu trả lời :  A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51 

27 tháng 10 2021
101+100+99+98+....+3+2+1 =(100+1)+100+(99+1)+(98+2)...+55 =(100+100)+1+100+100+.....+100+55 =200+1+55+100×100 =200+1+55+10000 =201+55+10000 =256+10000 10256
27 tháng 10 2021
Câu này hình như mik sai ở đâu á.Nếu sai au sủa giúp mik nhé 😢
31 tháng 12 2015

chắc là 51 nhé!!!!!!!!!!!!!!!!!!!!!!!!!

 

20 tháng 8 2016

\(1-2+3-4+5-6+.......+97-98+99-100+101\)

\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)

\(=50.\left(-1\right)+101=51\)

20 tháng 8 2016

1 - 2 + 3 - 4 + 5 - 6 + ...+..+97 - 98 + 99 - 100 + 101

= 1 + 0 + 0 + 0 + .. + ( - 101 )

= 1 + ( - 101 )

= 100

k mk nha

\(1+0+0+0+...+\left(-101\right)\)

\(=1+\left(-101\right)\)

\(=-100\)

lan hương sai rồi kìa

7 tháng 6 2023

Số số hạng là : 

\(\left(101-2\right):1+1=100\)

Tổng trên có giá trị là : 

\(\dfrac{\left(101+2\right).100}{2}=5150\)

 

7 tháng 6 2023

A= 2 + 3+4+...+96+97+98+99+100+101

Khoảng cách của dãy số trên là: 3-2 =1

Số số hạng của dãy số trên là: (101 - 2): 1 + 1 = 100 (số hạng)

Tổng A là: A = (101+2)\(\times\) 100 : 2  =5150

Đáp số: 5150

30 tháng 7 2018

\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)

\(=\frac{\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+\frac{101}{101}\right]}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=\frac{\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}+\frac{101}{101}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=\frac{101.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}}-2\)

\(=101-2\)( vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\ne0\))

\(=99\)

Tham khảo nhé~