Cho hình bình hành ABCD và một điểm M tùy ý. Chứng minh rằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ABCD là hình bình hành nên \(\overrightarrow {DC} = \overrightarrow {AB} \)
\( \Rightarrow \overrightarrow {BA} + \overrightarrow {DC} = \overrightarrow {BA} + \overrightarrow {AB} = \overrightarrow {BB} = \overrightarrow 0 \)
b) \(\overrightarrow {MA} + \overrightarrow {MC} = \left( {\overrightarrow {MB} + \overrightarrow {BA} } \right) + \left( {\overrightarrow {MD} + \overrightarrow {DC} } \right)\)
\(= \left( {\overrightarrow {MB} + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BA} + \overrightarrow {DC}} \right)\)
\(= \overrightarrow {MB} + \overrightarrow {MD} \) (Vì \(\overrightarrow {BA} + \overrightarrow {DC} = \overrightarrow {0} \))
1: Xét ΔADK và ΔCNK có
góc AKD=góc CKN
góc DAK=góc NCK
=>ΔADK đồng dạng với ΔCNK
2: Xét ΔKAM và ΔKCD có
góc KAM=góc KCD
góc AKM=góc CKD
=>ΔKAM đồng dạng với ΔKCD
=>KA/KC=KM/KD
=>KA*KD=KM*KC
a) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = 4\overrightarrow {MO} \)
\( \Leftrightarrow \overrightarrow {MO} + \overrightarrow {OA} + \overrightarrow {MO} + \overrightarrow {OB} + \overrightarrow {MO} + \overrightarrow {OC} + \overrightarrow {MO} + \overrightarrow {OD} = 4\overrightarrow {MO} \)
\( \Leftrightarrow 4\overrightarrow {MO} + \left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC} + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)
\( \Leftrightarrow 4\overrightarrow {MO} + \overrightarrow 0 + \overrightarrow 0 = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO} = 4\overrightarrow {MO} \) (luôn đúng)
(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)
b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Suy ra \(\)\(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) + \overrightarrow {AC} = \overrightarrow {AC} + \overrightarrow {AC} = 2\overrightarrow {AC} \) (đpcm)
VT=\(\overrightarrow{MB}\)+\(\overrightarrow{BA}\)+\(\overrightarrow{MD}\)+\(\overrightarrow{DC}\)
=(\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\))+(\(\overrightarrow{BA}\)+\(\overrightarrow{DC}\))
=\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\)+\(\overrightarrow{0}\) (vì \(\overrightarrow{BA}\) và \(\overrightarrow{DC}\) đối nhau)
=\(\overrightarrow{MB}\)+\(\overrightarrow{MD}\)(đpcm)