K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

 

Ta thấy 1995 chia hết cho 7, do đó:

 19921993 + 19941995 = (BS 7 – 3)1993 + (BS 7 – 1)1995 =  BS 7 – 31993 + BS 7 – 1

Theo câu b ta có 31993 = BS 7 + 3 nên 

 19921993 + 19941995 = BS 7 – (BS 7 + 3) – 1 = BS 7 – 4 nên chia cho 7 thì dư 3

 32860 = 33k + 1 = 3.33k = 3(BS 7 – 1) =  BS 7 – 3 nên chia cho 7 thì dư 4 

Ta có: \(2^{1994}=\left(2^{1992}\right).2^2=2^3.664.2^2=8^{664}.2^2\)

Do \(8^3\)  đồng dư 1 mod 7 nên \(8^{664}\) đồng dư 1.

Vậy \(8^{664}\).\(2^2\)=\(8^{664}\).4 sẽ đồng dư 4 mod 7.Vậy \(2^{1994}\) chia 7 dư 4.  
 

1992 đồng dư với 4 (mod 7)

\(1992^3\) đồng dư với 1 (mod 7)

=> \(\left(1992^3\right)^{664}\)đồng dư với \(1^{664}\) và đồng dư với 1 (mod 7)

1994 đồng dư với 6 (mod 7)

\(1994^2\) đồng dư với 1 (mod 7)

=> \(\left(1994^2\right)^{997}\)đồng dư với \(1^{997}\) và đồng dư với 1 (mod 7)

\(1992^{1993}+1994^{1995}\)

\(=1992.\left(1992^3\right)^{664}+1994.\left(1994^2\right)^{997}\)

\(=4.1+6.1=24\)

Vậy số dư là 24

22 tháng 1 2018

Vấn đề Nguyệt muốn hỏi là tại sao tự dưng bạn phía trên lại có thể làm ra như vậy khi số dư 24 lớn hơn số chia ~ :) 

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

9 tháng 9 2016

phan so nho nhat 19/60 chang

9 tháng 9 2016

theo mình là 13/40

16 tháng 10 2018

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.

Vậy  M chia cho 3 dư 2,không là số chính phương.

Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.

Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.

Vậy số N chia cho 4 dư 2,không là số chính phương.

13 tháng 6 2019
Bạn ở Nghệ An à
13 tháng 6 2019

\(Phân\)\(số\)\(nhỏ\)\(nhất\)\(là\)\(:\)

\(\frac{19}{60}\)

8 tháng 8 2019

Ta có: \(1992^2\) chia 3 dư 0,1 

          1993^2..........................

            1994^2...........................

\(\Rightarrow N=1992^2+1993^2+1994^2\) chia 3 dư 0

(đpcm)

28 tháng 12 2021

Gấp nha,gấp nha!!