Cho tam giác ABC(BC>AC) Đường tròn tâm C bán kính AC cắt BC tại D. Cho I là đường tròn nội tiếp tam giác ABC và T là đường tròn đi qua I và tiếp xúc với đường CA tại A. Đường AB và T giao nhau tại F(F khác A). CMR BF=BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: BF và CE cắt nhau tại H
a) Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
\(\Leftrightarrow CE\perp BE\)
\(\Leftrightarrow CE\perp AB\)
\(\Leftrightarrow\widehat{AEC}=90^0\)
hay \(\widehat{AEH}=90^0\)
Xét (O) có
ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBFC vuông tại F(Định lí)
\(\Leftrightarrow BF\perp CF\)
\(\Leftrightarrow BF\perp AC\)
\(\Leftrightarrow\widehat{AFB}=90^0\)
hay \(\widehat{AFH}=90^0\)
Xét tứ giác AEHF có
\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối
\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔABC có
BF là đường cao ứng với cạnh AC(cmt)
CE là đường cao ứng với cạnh AB(cmt)
BF cắt CE tại H(gt)
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
\(\Leftrightarrow AH\perp BC\)
hay \(AD\perp BC\)(đpcm)
Bổ đề: Tam giác ABC cân tại A. Điểm D nằm trên trung trực của BC khi và chỉ khi \(\widehat{ADB}=\widehat{ADC}\).
Giải: Vì \(CD=CA\), điểm I nằm trên phân giác \(\widehat{ACD}\) nên \(ID=IA\)
Ta thấy (J) tiếp xúc với CA tại A, suy ra \(\widehat{AFI}=\widehat{IAC}=\widehat{IAF}\) hay \(IA=IF\)
Từ đó \(\Delta DIF\) cân tại I. Chú ý rằng \(\widehat{IBF}=\widehat{IBD}\), suy ra \(BF=BD\) theo bổ đề.