Giúp mk giải mấy câu nhé:
Câu 14( câu này hơi khó nhìn)
\(\frac{x+2}{3}=\frac{7-3}{4}=\frac{z+1}{5}\)và x+y+z= -12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{5}=\frac{y}{4}.\frac{1}{5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{4}=\frac{z}{7}.\frac{1}{4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Suy ra : \(\begin{cases}\frac{2x}{30}=3\\\frac{3y}{60}=3\\\frac{z}{28}=3\end{cases}\) \(\Rightarrow\begin{cases}x=45\\y=60\\z=84\end{cases}\)
b) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)
\(=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{45}{9}=5\)
Suy ra : \(\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}\) \(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)
a ) \(\frac{x}{3}=\frac{y}{5};\frac{y}{5}=\frac{z}{7}\)
Quy đồng : \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{186}{62}=3\)
\(\Rightarrow\frac{x}{15}=3\Rightarrow x=45\)
\(\Rightarrow\frac{y}{20}=3\Rightarrow y=60\)
\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)
Vậy x = 45 , y = 60 , z = 84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
Tớ làm lần lượt nhé.
Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)
\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)
\(\frac{y-2}{4}=1\Rightarrow y=6\)
\(\frac{z-3}{5}=1\Rightarrow z=3\)
\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)
\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)
\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)
\(\Rightarrow x=7\cdot\frac{200}{35}=40\)
\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)
P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9\)
\(\Rightarrow\begin{cases}\frac{x}{2}=9\\\frac{y}{3}=9\\\frac{z}{4}=9\end{cases}\)\(\Rightarrow\begin{cases}x=18\\y=27\\z=36\end{cases}\)
Vậy x=18;y=27;z=36
Áp dụng tc dãy tỉ
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9\)
Với \(\frac{x}{2}=9\Rightarrow x=18\)
Với \(\frac{y}{3}=9\Rightarrow y=27\)
Với \(\frac{z}{4}=9\Rightarrow z=36\)
A = 2 - 5 + 8 - .... - 101 ( 34 số hạng )
A = ( 2 - 5 ) + ( 8 - 11 ) + ( 14 -17 ) + .... + ( 98 - 101 ) ( 17 nhóm )
A = - 3 - 3 - ... - 3 ( 17 số hạng )
A = -3.17 = -51
BẠN ƠI MÌNH CHỈ GIẢI VÀI CÂU THÔI NHA:
7) 2x = 3y = 5z và x - y + z = -33
Ta có: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x - y + z = -33
Theo tính chất của dãy tỉ số = nhau, ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
Do đó:
\(\frac{x}{15}=-3\Rightarrow x=-45\)
\(\frac{y}{10}=-3\Rightarrow y=-30\)
\(\frac{z}{6}=-3\Rightarrow z=-18\)
vậy x=-45 y=-30 z=-18
8) 5x = 8y = 20z và x-y-z =3
ta có: \(\frac{x}{160}=\frac{y}{100}=\frac{z}{40}\) và x-y-z = 3
Theo t/c của dãy tỉ số = nhau, có:
\(\frac{x}{160}=\frac{y}{100}=\frac{z}{40}=\frac{x-y-z}{160-100-40}=\frac{3}{20}=0,15\)
Do đó:
\(\frac{x}{160}=3\Rightarrow x=24\)
\(\frac{y}{100}=3\Rightarrow y=15\)
\(\frac{z}{40}=3\Rightarrow z=6\)
vậy x= 24 y=15 z=6