tìm x
\(2^x\) . 4= 128
\(x^{15}\) = x
( 2x + 1)\(^3\) =125
( x - 5 ) \(^4\) = ( x - 5)\(^6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x . 4 = 128
<=> 2x = 32
<=> 2x = 25
<=> x = 5
b) x15 = x1
<=> x15 - x = 0
<=> x(x14 - 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1^{14}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
c) (2x + 1)3 = 125
<=> (2x + 1)3 = 53
<=> 2x + 1 = 5
<=> 2x = 4
<=> x = 2
d) (x - 5)4 = (x - 5)6
<=> (x - 5)6 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
Khi (x - 5)4 = 0 => x - 5 = 0 => x = 5
Khi (x - 5)2 - 1 = 0 <=> (x - 5)2 = 12 <=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 2 . 2 . 2 . 2 . 2
2x = 25
x = 5
(2x + 1)3 = 125
(2x + 1)3 = 5 . 5 . 5
(2x + 1)3 = 53
2x + 1 = 5
2x = 5 - 1
2x = 4
x = 4 : 2
x = 2
x15 = x
x = 1
(x - 5)4 = (x - 5)6
x = 6
a, 2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
b, x15 = x1
=> x15 - x = 0
x . ( x14 - 1 ) = 0
=> x = 0 hoặc x14 - 1 = 0
=> x = 0 hoặc x = 1
c, (2x + 1)3 = 125
( 2x + 1 )3 = 53
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 4 : 2
=> x = 2
d, (x – 5)4 = (x - 5)6
=> ( x - 5 )6 - ( x - 5 )4 = 0
=> ( x - 5 )4 . [ ( x - 5 )2 - 1 ] = 0
=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
e, x10 = x
x10 - x = 0
x . ( x9 - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
f, (2x -15)5 = (2x -15)3
( 2x - 15 )5 - ( 2x - 15 )3 = 0
( 2x - 15 )3 . [ ( 2x - 15 )2 - 1 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=1\end{cases}\Rightarrow}\orbr{\begin{cases}x\text{ không tồn tại}\\x=8\end{cases}}}\)
a) \(2^x.4=128\)
\(\Rightarrow2^x=128:4=32\)
Mà \(32=2^5\)
\(\Rightarrow2^x=2^5\)
Vậy x = 5
b) \(x^{15}=x\)
\(\Rightarrow x=\left\{0;1;-1\right\}\)
c) Ta có: \(125=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1=4\)
\(\Rightarrow x=4:2=2\)
Vậy x = 2
d) Ta có: \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow x=5\)
Ủng hộ tớ nha?
\(2^x.4=128\)
\(\Rightarrow2^x.2^2=2^7\)
\(\Rightarrow x+2=7\)
\(\Rightarrow x=5\)
\(x^{15}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=+-1\end{cases}}\)
\(\left(2x+1\right)^3=125\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Tìm số tự nhiên x biết rằng
a) 2x . 4 = 128 b) x15 = x
c) ( 2x + 1 )3 = 125 d) ( x - 5 )4 = ( x - 5 )6
a ) 2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
Vậy x = 5
b ) x15 = x
=> x15 : x = 1
x14 = 1
x14 = 114
=> x = 1
Vậy x = 1
c ) ( 2x + 1 )3 = 125
( 2x + 1 )3 = 53
=> 2x + 1 = 5
2x = 5 - 1
2x = 4
=> x = 4 : 2
x = 2
Vậy x = 2
d ) ( x - 5 )4 = ( x - 5 )6
( x - 5 )6 - ( x - 5 )4 = 0
( x - 5 )4 . [ ( x - 5 )2 - 1 ] = 0
=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\text{[}\left(x-5\right)^2-1=0\end{cases}}\)=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)=> \(\orbr{\begin{cases}x=5\\x-5=1\end{cases}}\)=> \(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
Vậy x thuộc { 5 ; 6 }
a ) 2 x . 4 = 128
2 x = 32
2 x = 2 5
=> x = 5
b ) x 15 = x
=> x = 0 hoặc x = 1
c ) ( 2x + 1 ) 3 = 125
( 2x + 1 ) 3 = 5 3
=> 2x + 1 = 5
2x = 4
x = 2
d ) ( x - 5 ) 4 = ( x - 5 ) 6
=> x - 5 = 0 hoặc x - 5 = 1
x = 5 x = 6
Vậy x = 5 hoặc x = 6
a) x=5
b) x=1 hoặc x=0 hoặc x=-1
c) x=2
d) x=5 hoặc x=-4 hoặc x=6
a)\(2^x.4=128\Leftrightarrow2^x=32\Leftrightarrow2^x=2^5\Rightarrow x=5\)
b)\(\left(2x+1\right)=125\Leftrightarrow2x=126\Leftrightarrow x=13\)
c)\(x^{15}=x\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
d) \(\left(x-5\right)^4=\left(x-5\right)^5\Leftrightarrow\orbr{\begin{cases}x-5=1\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)
a,
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b,
2x = 124
x = 62
c,
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
d,
\(0=\left(x-5\right)^5-\left(x-5\right)^4\)
\(\left(x-5\right)^4\left(x-5-1\right)=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
\(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
\(x^{15}=x\Leftrightarrow x\in\left\{-1;0;1\right\}\)
\(\left(2x+1\right)^3=125\)
\(\Leftrightarrow\left(2x+1\right)^3=5^3\)
\(\Leftrightarrow2x+1=5\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
\(\Leftrightarrow\hept{\begin{cases}x-5=-1\\x-5=0\\x-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\x=5\\x=6\end{cases}}\)
\(\text{Vậy:}\)\(x\in\left\{4;5;6\right\}\)
\(2^x.4=128\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5.\)
\(x^{15}=x\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
\(\left(2x+1\right)^3=125\)
<=> \(\left(2x+1\right)^3=5^3\)
<=> \(2x+1=5\)
<=> \(x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
<=> \(\left(x-5\right)^6-\left(x-5\right)^4=0\)
<=> \(\left(x-5\right)^4.\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
Giải ra được x = 5 ; x = 6 ; x = 4 .
a.
2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
x = 5
b.
x15 = x
Vậy x = 0 hoặc x = 1 hoặc x = -1
c.
(2x + 1)3 = 125
(2x + 1)3 = 53
2x + 1 = 5
2x = 5 - 1
2x = 4
x = 4 : 2
x = 2
d.
(x - 5)4 = (x - 5)6
TH1:
x - 5 = 0
x = 5
TH2:
x - 5 = -1
x = -1 + 5
x = 4
TH2:
x - 5 = 1
x = 1 + 5
x = 6
Vậy x = 5 hoặc x = 4 hoặc x = 6
Chúc bạn học tốt ^^
a) \(2^x.4=128\)
=> \(2^x=32\) => \(2^x=2^5\) => x = 5
b) \(x^{15}=x\) => x = 1 hoặc x = 0
c) \(\left(2x+1\right)^3=125\)
=> \(\left(2x+1\right)^3=5^3\) => 2x + 1 = 5 => x = 2
d) \(\left(x-5\right)^4=\left(x-5\right)^6\)
=> x - 5 = 0 hoặc x - 5 = 1
=> x = 5 hoặc x= 6
Chúc bạn làm bài tốt