Cho tam giác ABC vuông tại A, có M là trung điểm của BC, N là hình chiếu của M trên AC. K là hình chiếu của N trên BC. Biết MN=15 cm, NK=12 cm. Tính:
a/ vẽ hình
b/ tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có MN =15 cm NK =12 cm
Xét: Tam giác AHB (HBN) = 90 độ HM = đc
Xét tam giác AHC (AHC = 90 độ) có HN là đường cao
=> AH =An = AC (2)
Kết luận sơ sơ: Từ (1) (2) AM AB =AN=AC
...................... còn lại chịu -.-
~Study well~ :)
a) Áp dụng hệ thức lượng △NMC vuông tại N ta có :
\(\frac{1}{MN^2}+\frac{1}{NC^2}=\frac{1}{NK^2}\)
\(\Leftrightarrow\frac{1}{15^2}+\frac{1}{NC^2}=\frac{1}{12^2}\)
\(\Leftrightarrow NC=20\)cm
Ta có : △ABC vuông tại A có AM là đường trung tuyến (M thuộc BC)
=> AM = MC
=> △AMC cân tại M
=> MN đồng thời vừa là đường cao vừa là đường trung tuyến
=> AN = NC = \(\frac{AC}{2}\)
Mà NC = 20cm
=> AC = 40cm
=> \(S_{AMC}=\frac{40.15}{2}=300\left(cm^2\right)\)
Ta có : \(S_{AMC}=\frac{1}{2}S_{ABC}\)
vì có cùng độ dài đường cao và \(MC=\frac{1}{2}BC\)
Vậy \(S_{ABC}=600cm^2\)
a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔABM=ΔNBM
=>\(\widehat{AMB}=\widehat{NMB}\)
=>MB là phân giác của góc AMN
b: Ta có: NK//BM
=>\(\widehat{BMN}=\widehat{KNM}\)(hai góc so le trong) và \(\widehat{MKN}=\widehat{AMB}\)(hai góc đồng vị)
mà \(\widehat{NMB}=\widehat{AMB}\)
nên \(\widehat{KNM}=\widehat{MKN}\)
=>ΔMKN cân tại M
a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔABM=ΔNBM
Suy ra: \(\widehat{AMB}=\widehat{NMB}\)
hay MB là tia phân giác của góc AMN
b: Ta có: MK//BM
nên \(\widehat{BMN}=\widehat{MNK}\)
M là trug điểm BC
MN //AB
nên MN là đường trung bình của AB , AB=2MN=30
- Áp dụng hệ thức lương vào tam giác vuông MNC (vuông tại N)
ta có \(\frac{1}{NK^2}=\frac{1}{NM^2}+\frac{1}{NC^2}\)
=> ta tìm dc NC mà AC=2NC
vậy ta biết dc 2 cạnh AB và AC
diện h tam giác \(=\frac{1}{2}.AB.AC\)
bạn tự vẽ hình nhé
b) Vì N là hình chiếu của M trên AC nên MN vuông góc với AC
=> MN//AB
Xét ΔABC có M là trung điểm của BC
MN//AB
=> N là trung điểm của AC
Xét ΔABC có M là trung điểm của BC
N là trung điểm của AC
=> MN là đường trung bình của ΔABC
=> MN = 1/2.AB
=> AB = 30 cm
Xét ΔMNC vuông tại N có NK là đường cao
=> \(\frac{1}{NK^2}=\frac{1}{MN^2}+\frac{1}{NC^2}\)
=> \(\frac{1}{144}=\frac{1}{225}+\frac{1}{NC^2}\)
=> NC = 20 cm
=> AC = 40 cm
=> diện tích ABC = AB.AC/2 = 30.40:2 = 600 cm2
Chúc bạn làm bài tốt