K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016
undefined
7 tháng 12 2017

\(ĐKXĐ:a\ge0;a\ne4\)

Vế thứ nhất mẫu thức chung là \(\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\)   

chỗ \(-\frac{4a}{a-4}\)chuyển thành \(\frac{4a}{4-a}\)tách ra được \(\frac{4a}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}\)  ( sử dụng hằng đẳng thức hiệu hai bình phương)

vế thứ hai mẫu thức chung là \(\sqrt{a}\left(2-\sqrt{a}\right)\)

tách cái sau ra \(\frac{\sqrt{a}+3}{\sqrt{a}\left(2-\sqrt{a}\right)}\)  thì cái trước phải nhân cả tử và mẫu với \(\sqrt{a}\)

2 tháng 12 2019

B đâu ra chỉ? Không biết đề có sai không chứ mình rút gọn ra nhiêu đây thì ko đủ chứng minh C\(\ge0\) được

Căn bậc hai. Căn bậc ba

2 tháng 12 2019

Vậy có thể chứng minh \(C>0\) được ko?

NV
22 tháng 10 2019

ĐKXĐ: \(a>0;a\ne4;9\)

\(C=\left(\frac{\left(2+\sqrt{a}\right)^2}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}-\frac{\left(2-\sqrt{a}\right)^2}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}+\frac{4a}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}\right):\left(\frac{2\sqrt{a}}{\sqrt{a}\left(2-\sqrt{a}\right)}-\frac{\sqrt{a}+3}{\sqrt{a}\left(2-\sqrt{a}\right)}\right)\)

\(=\left(\frac{a+4\sqrt{a}+4-a+4\sqrt{a}-4+4a}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}\right):\left(\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\right)\)

\(=\frac{4\sqrt{a}\left(\sqrt{a}+2\right)}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}.\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{\left(\sqrt{a}-3\right)}=\frac{4a}{\sqrt{a}-3}\)

\(C=-1\Leftrightarrow\frac{4a}{\sqrt{a}-3}=-1\)

\(\Leftrightarrow4a+\sqrt{a}-3=0\Leftrightarrow\left(\sqrt{a}+1\right)\left(4\sqrt{a}-3\right)=0\)

\(\Leftrightarrow4\sqrt{a}-3=0\Leftrightarrow\sqrt{a}=\frac{3}{4}\Rightarrow a=\frac{9}{16}\)

7 tháng 8 2019
https://i.imgur.com/3xuKEN9.jpg
7 tháng 8 2019
https://i.imgur.com/JCFXX2s.jpg
20 tháng 7 2016

A=căn[(x-5)2]/x-5=|x-5|/x-5

Nếu x>=5 thì A=1

Nếu x<5 thì A=-1

Cho e xin cảm ơn trc ak

21 tháng 3 2020

C=\(\left(\frac{2+\sqrt{a}}{2-\sqrt{a}}-\frac{2-\sqrt{a}}{2+\sqrt{a}}-\frac{4a}{a-4}\right):\left(\frac{2}{2-\sqrt{a}}-\frac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

\(\Leftrightarrow C=\left(\frac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2+4a}{4-a}\right)\):\(\left(\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\right)\)

\(\Leftrightarrow C=\frac{4+4\sqrt{a}+a-4+4\sqrt{a}-a+4a}{4-a}\).\(\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{\sqrt{a}-3}\)

\(\Leftrightarrow C=\frac{4\sqrt{a}(\sqrt{a}+2)}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}.\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{\sqrt{a}-3}\)

\(\Leftrightarrow C=\frac{4a}{\sqrt{a}-3}\)

b. Để C>0 thì \(\sqrt{a}\)-3>0 ( Do 4\(\sqrt{a}\)>0 với mọi a>0)

\(\Leftrightarrow\sqrt{a}>3\Leftrightarrow\text{​​}a>9\)

Vậy khi a>9 thì C>0

c. C=-1

\(\Leftrightarrow\) \(\frac{4a}{\sqrt{a}-3}=-1\Leftrightarrow4a=3-\sqrt{a}\Leftrightarrow4a+\sqrt{a}-3=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=-1\:\left(loai\right)\\\sqrt{a}=\frac{3}{4}\end{matrix}\right.\: \Leftrightarrow a=\frac{9}{16}\)

Vậy khi a=9/16 thì C=-1

NV
10 tháng 11 2019

\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)