K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta có: n\(^3\)+11n

= n\(^3\) ‐n+12n

= n﴾n\(^2\) ‐1﴿+12n

=﴾n‐1﴿﴾n+1﴿n+12n

Vì n‐1, n, n+1 là tích 3 số nguyên liên tiếp nên n﴾n‐1﴿﴾n+1﴿ chia hết cho 6. Mà 12n chia hết cho 6 =>n 3+11n chia hết cho 6

19 tháng 7 2016

n3+11 chia hết cho 6 => (n3-n)+12n chia hết cho 6 

+) 12n chia hết cho 6 

n3-n = n.(n2-1) chia hết cho 6 

. Nếu n lẻ => n2-1 chia hết cho 2 =>n.(n2-1) chia hết cho 2

. Nếu n chẵn =>n.(n2-1) chia hết cho 2 

. Nếu n chia hết cho 3 => n.(n2-1) chia hết cho 3 

. Nếu n không chia hết cho 3 => n2 chia 3 dư 1 =>n2-1 chia hết cho 3 => n.(n2-1) chia hết cho 3

Mà (2;3)=1 nên n.(n2-1) chia hết cho 6

=> n3+11 chia hết cho 6 

20 tháng 11 2018

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.

7 tháng 3 2021

n^3+11n chia hết cho 6

n^3+11n=n^3-n+12n

=(n-1)n(n+1)+12n

vậy n^3+11n luôn chia hết cho 6, với mọi n

12 tháng 1 2019

* Với n =1  ta có 1 3 + 11.1 = 12  chia hết cho 6 đúng.

* Giả sử với n = k thì k 3   + 11 k chia hết cho 6.

* Ta phải chứng minh với n =k+1  thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.

Thật vậy ta có :

k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12   *

Ta có; k 3 +11k chia hết cho 6 theo bước 2.

k(k+1) là tích 2 số tự  nhiên liên tiếp nên chia hết cho 2  ⇒ 3 k ( k + 1 ) ⋮ 6

Và 12 hiển nhiên chia hết cho 6.

Từ đó suy ra (*) chia hết cho 6 (đpcm).

27 tháng 12 2016

Ta thấy : 12769 = 113 x 113

Giả sử A = n2 + 11n + 2 chia hết cho 12769

=> 4A = 4 (n2+ 11n + 2 ) chia hết cho 12769

     4A = 4n2 + 44n + 8 chia hết cho 12769

     4A = [ (2n)2+ 2 x 2n x 11 + 121 ] - 113 chia hết cho 12769

=> 4A = (2n+11)- 113 chia hết cho 12769 (1). 

Vậy thì 4A = (2n+11)- 113 chia hết cho 113.

=> (2n+1)2 chia hết cho 113 ( vì 113 chia hết cho 113 )

=> 2n + 1 chia hết cho 113 ( vì 113 là số nguyên tố )

=> (2n+1)2 chia hết cho 1132 = 12769 (2)

Từ (1) và (2) => 113 chia hết cho 12769 ( Vô lí )

Vậy n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.

9 tháng 7 2021

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

12 tháng 10 2015

Lấy n = 1 thì điều trên không đúng 

Em xem lại đề

6 tháng 6 2016

1/

a/ \(100+20b=20\left(5+b\right)\) chia hết cho 20

b/ \(abab=10.ab+ab=11.ab\) chia hết cho ab

3/ Tích trên là tích của 3 số tự nhiên liên tiếp

+ Nếu n chẵn do n>=1 => n chia hết cho 2 => tích trên chia hết cho 2

+ Nếu n lẻ và n chia 2 dư 1 thì n-1 và n+1 chia hết cho 2 => tích trên chia hết cho 2

=> tích trên chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 thì tích trên chia hết cho 3

+ Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => tích chia hết cho 3

+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => tích chia hết cho 3

=> Tích trên chia hết cho 3 với mọi n

Mà 2 và 3 là hai số nguyên tố cùng nhau => tích trên chia hết cho 2x3 tức là chia hết cho 6

9 tháng 9 2018

a) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{97}.31\)

\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

b) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)

\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)

\(=5+5.30+5^3.30+...+5^{97}.30\)

\(=5+30.\left(5+5^3+...+5^{97}\right)\)

\(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)

c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)

\(4S=5^{100}-5\)

\(\Rightarrow25^x-5=5^{100}-5\)

\(\Rightarrow25^x=5^{100}\)

\(\Rightarrow25^x=25^{50}\)

\(\Rightarrow x=50\)

23 tháng 11 2018

n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2) 
số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

23 tháng 11 2018

Hello

30 tháng 8 2015

MK DAM CHAC BA CO NAY HON LOP 6

30 tháng 8 2015

Ta có:

\(10^n+72n-1=10^n-1+8.9.n=\left(10-1\right)\left(10^{n-1}+10^{n-2}...+1\right)+9.8.n\)

\(9\left(10^{n-1}+10^{n-2}+...+1\right)+9.8.n=9\left(8n+10^{n-1}+10^{n-2}+...+1\right)\)

Luôn luôn chia hết cho 9