K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Khó hiểu quá bận ơi!!!

Tại hai điểm A và B cách nhau một khoảng L trên một đường thẳng có ba xe cùng xuất phát và chuyển động thẳng đều. Xe 1 xuất phát từ A đi theo hướng AB, xe 2 xuất phát từ B đi cùng hướng xe 1, xe 3 xuất phát từ B đi theo hướng BA. Vận tốc của xe 1, xe 2, xe 3 lần lượt là v1 = 30km/h; v2 = 40km/h; v3 = 50km/h. Khi gặp xe 1 thì xe 3 lập tức quay lại đuổi theo xe 2. Thời gian từ lúc xe 3 gặp xe 1 đến lúc xe 3...
Đọc tiếp

Tại hai điểm A và B cách nhau một khoảng L trên một đường thẳng có ba xe cùng xuất phát và chuyển động thẳng đều. Xe 1 xuất phát từ A đi theo hướng AB, xe 2 xuất phát từ B đi cùng hướng xe 1, xe 3 xuất phát từ B đi theo hướng BA. Vận tốc của xe 1, xe 2, xe 3 lần lượt là v1 = 30km/h; v2 = 40km/h; v3 = 50km/h. Khi gặp xe 1 thì xe 3 lập tức quay lại đuổi theo xe 2. Thời gian từ lúc xe 3 gặp xe 1 đến lúc xe 3 đuổi kịp xe 2 là 5,4 phút. Coi vận tốc của mỗi xe là không đổi, bỏ qua thời gian xe quay đầu. a) Tính khoảng cách L và thời gian từ khi các xe xuất phát đến khi xe 3 gặp xe 1. b) Khi xe 3 đuổi kịp xe 2 thì xe 3 cách xe 1 một khoảng bao nhiêu?

BÀI 42. Trên đường thẳng có ba người: Người đi xe đạp, người đi xe máy và người đi bộ ở giữa hai người trên. Ban đầu khoảng cách từ người đi bộ tới người đi xe đạp nhỏ hơn hai lần so với khoảng cách từ người đi bộ tới người đi xe máy. Vận tốc của người đi xe đạp và người đi xe máy tương ứng là 20km/h và 60km/h. Người đi bộ cần đi theo hướng nào và với vận tốc bằng bao nhiêu để ba người cùng gặp nhau tại một điểm?

2
2 tháng 7 2021

- Gọi thời gian xuất phát là to, điểm gốc tại A, chiều dương là chiều từ A đến B .

- Theo bài ra ta có : \(\left\{{}\begin{matrix}x_1=30t\\x_2=L+40t\\x_{3.1}=L-50t\end{matrix}\right.\)

- Ta có : Khi xe 1 và xe 3 gặp nhau thì tổng quãng đường đi được là AB.

\(\Rightarrow80t=L\)

\(\Rightarrow t=\dfrac{L}{80}\)

=> Hai xe gặp nhau lại điểm cách A : \(\dfrac{30L}{80}=\dfrac{3L}{8}\left(km\right)\)

- Xét quá trình từ sau khi xe 1 gặp xe 3 :\(\left\{{}\begin{matrix}x_1=\dfrac{3L}{8}+30t^,\\x_2=40.\dfrac{L}{80}+L+40t^,\\x_3=\dfrac{3L}{8}+50t^,\end{matrix}\right.\)

- Để xe 2 đuổi kịp xe 3 thì \(\dfrac{3}{2}L+40t^,=\dfrac{3}{8}L+50t^,\)

Lại có : \(t=\dfrac{L}{80}\)

\(\Rightarrow t+t^,=0,09=\dfrac{L}{80}+t^,\)

- Giair hệ ta được : \(\left\{{}\begin{matrix}L=0,72\left(km\right)\\t^,=0,081\left(h\right)\\t=0,009\left(h\right)\end{matrix}\right.\)

b, Ta có : \(d_{3-1}=\dfrac{3}{8}L+50t^,-\dfrac{3}{8}L-30t^,=1,62\left(km\right)\)

Vậy ,....

 

2 tháng 7 2021

- Gọi chiều dương là chiều từ người đi bộ hướng tới người đi xe đạp , thời gian gốc là to, điểm mốc tại người đi bộ và khoảng cách giữa người đi bộ và đi xe đạp là x0 ( km, x > 0 ) và 3 người xe đạp, bộ, xe máy lần lượt là 1,2,3 .

- Theo bài ra ta có : \(\left\{{}\begin{matrix}x_1=x_0+20t\\x_2=vt\\x_3=-2x_0+60t\end{matrix}\right.\)

- Để 3 người cùng gặp nhau tại 1 điểm .

=> \(x_1=x_2=x_3=x\)

\(\Rightarrow x_0=\dfrac{40}{3}t\)

\(\Rightarrow x=\dfrac{100}{3}t=vt\)

\(\Rightarrow v=\dfrac{100}{3}\left(km/h\right)\)

Vậy ...

Tại hai điểm A và B cách nhau một khoảng L trên một đường thẳng có ba xe cùng xuất phát và chuyển động thẳng đều. Xe 1 xuất phát từ A đi theo hướng AB, xe 2 xuất phát từ B đi cùng hướng xe 1, xe 3 xuất phát từ B đi theo hướng BA. Vận tốc của xe 1, xe 2, xe 3 lần lượt là v1 = 30km/h; v2 = 40km/h; v3 = 50km/h. Khi gặp xe 1 thì xe 3 lập tức quay lại đuổi theo xe 2. Thời gian từ lúc xe 3 gặp xe 1 đến lúc xe 3...
Đọc tiếp

Tại hai điểm A và B cách nhau một khoảng L trên một đường thẳng có ba xe cùng xuất phát và chuyển động thẳng đều. Xe 1 xuất phát từ A đi theo hướng AB, xe 2 xuất phát từ B đi cùng hướng xe 1, xe 3 xuất phát từ B đi theo hướng BA. Vận tốc của xe 1, xe 2, xe 3 lần lượt là v1 = 30km/h; v2 = 40km/h; v3 = 50km/h. Khi gặp xe 1 thì xe 3 lập tức quay lại đuổi theo xe 2. Thời gian từ lúc xe 3 gặp xe 1 đến lúc xe 3 đuổi kịp xe 2 là 5,4 phút. Coi vận tốc của mỗi xe là không đổi, bỏ qua thời gian xe quay đầu. a) Tính khoảng cách L và thời gian từ khi các xe xuất phát đến khi xe 3 gặp xe 1. b) Khi xe 3 đuổi kịp xe 2 thì xe 3 cách xe 1 một khoảng bao nhiêu?

 BÀI 42. Trên đường thẳng có ba người: Người đi xe đạp, người đi xe máy và người đi bộ ở giữa hai người trên. Ban đầu khoảng cách từ người đi bộ tới người đi xe đạp nhỏ hơn hai lần so với khoảng cách từ người đi bộ tới người đi xe máy. Vận tốc của người đi xe đạp và người đi xe máy tương ứng là 20km/h và 60km/h. Người đi bộ cần đi theo hướng nào và với vận tốc bằng bao nhiêu để ba người cùng gặp nhau tại một điểm? 

BÀI 43. Ba người đi xe đạp xuất phát từ A, chuyển động thẳng đều để đi đến B. Người thứ nhất và người thứ hai xuất phát cùng một lúc với các vận tốc tương ứng là 1 v 10 km/h và 2 v 12 km/h, còn 7 người thứ ba xuất phát sau hai người kia là 30 phút. Biết khoảng cách giữa hai vị trí gặp nhau của người thứ ba lần lượt với hai người đi trước là 5 km. Tìm vận tốc của người thứ ba.

0
6 tháng 11 2016

a)

- Chọn gốc tọa độ O là vị trí ô tô bắt đầu đuổi theo xe khách và mốc thời gian là thời điểm ô tô đang ở O.

- Phương trình chuyển động của hai xe là:

+ Ô tô: \(x_1=v_1.t=60t\)

+ Xe khách: \(x_2=x_0+v_2.t=20+40t\)b) - Lập bảng biến thiên (tớ làm cái này chứ ít thấy người viết cái này bạn nhé)

\(t\left(h\right)\)\(0\)\(1\)
\(x_1\left(km\right)\)\(0\)\(60\)
\(x_2\left(km\right)\)\(20\)\(60\)

=> Ta vẽ được đồ thị của 2 xe như sau:

Chuyển động thẳng đều

c) Dựa vào đồ thị cho ta biết thời điểm 2 xe gặp nhau là sau 1 giờ và tại vị trí có toạ độ \(60km\)

13 tháng 9 2020

Bạn chưa tính x thì làm sao lập đồ thị được, bảng biến thiên có bị thiếu ko, thấy hơi kì

29 tháng 11 2016

1)

s1 = 100m

t1 = 25s

s2 = 50m

t2 = 20s

Vận tốc trong bình của xe trên quãng đường xuống dốc là:

vtb1 = \(\frac{s_1}{t_1}=\frac{100}{25}=4\)(m/s)

Vận tốc trung bính của xe trên quãng đường xe lăn tiếp là:

vtb2 = \(\frac{s_2}{t_2}=\frac{50}{20}=2,5\)(m/s)

Vận tốc trung bình của xe trên cả đoạn đường là:

vtb = \(\frac{s_1+s_2}{t_1+t_2}=\frac{100+50}{25+20}=3,\left(3\right)\)(m/s)

29 tháng 11 2016

2) Gọi s là quãng đường AB

t1 là thời gian đi trên nửa quãng đường đầu

t2 là thời gian đi trên nửa quãng đường sau

s1 là nửa quãng đường đầu.

s2 là nửa quãng đường sau

s1 = s2 = \(\frac{s}{2}\)

Thời gian xe chạy trên nửa quãng đường đầu là:

t1 = \(\frac{s_1}{v_1}=\frac{s}{2.5}=\frac{s}{10}\)(s)

Thời gian xe chạy trên nửa quãng đường sau là:

t2 = \(\frac{s_2}{v_2}=\frac{s}{2.3}=\frac{s}{6}\)(s)

Vận tốc trung bình trên cả đoạn đường AB là :

\(v_{tb}=\frac{s_1+s_2}{t_1+t_2}=\frac{s}{\frac{s}{10}+\frac{s}{6}}=\frac{1}{\frac{1}{10}+\frac{1}{6}}=3,75\)(m/s)