K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 1 2017

Lời giải:

Đặt \(\left(\frac{1}{ab},\frac{1}{bc},\frac{1}{ac}\right)\mapsto (x,y,z)\). ĐK chuyển thành \(x^2+y^2+z^2+2xyz=1\)

Ta cần CM \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\geq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\Leftrightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$

\(x^2+y^2+z^2+2xyz=1\) nên tồn tại $m,n,p>0$ sao cho \(x=\frac{m}{\sqrt{(m+n)(m+p)}};y=\frac{n}{\sqrt{(n+p)(n+m)}};z=\frac{p}{\sqrt{(m+p)(n+p)}}\)

Khi đó \((1)\Leftrightarrow m\sqrt{n+p}+n\sqrt{m+p}+p\sqrt{m+n}\geq \frac{2mn}{\sqrt{m+n}}+\frac{2np}{\sqrt{n+p}}+\frac{2mp}{\sqrt{m+p}}\)

\(\Leftrightarrow \frac{m(p-n)}{\sqrt{m+n}}+\frac{n(p-m)}{\sqrt{m+n}}+\frac{n(m-p)}{\sqrt{n+p}}+\frac{p(m-n)}{\sqrt{n+p}}+\frac{m(n-p)}{\sqrt{m+p}}+\frac{p(n-m)}{\sqrt{m+p}}\geq 0\)

\(\Leftrightarrow \sum \frac{m(p-n)^2}{\sqrt{(m+n)(m+p)}(\sqrt{m+n})+\sqrt{m+p})}\geq 0\) (luôn đúng)

Do đó $(1)$ đúng, suy ra ta có đpcm

Dấu $=$ xảy ra khi $m=n=p$ hay $x=y=z=\frac{1}{2}$ hay $a=b=c=\sqrt{2}$

14 tháng 12 2019

Ta chứng minh với a,b > 0 thì : \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow2ab\left(a^4+b^4\right)\ge ab\left(a+b\right)\left(a^3+b^3\right)\)\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow a^4+b^4\ge ab^3+ba^3\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )

Gọi biểu thức là A

Ta có : \(A\ge\frac{1}{2}.\left(2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=1\)

14 tháng 12 2019

Có thể xem thêm cách khác trong câu hỏi tương tự 

Dễ dàng CM đc: \(\left(a^3+b^3\right)^2\le\left(a^4+b^4\right)\left(a^2+b^2\right)\)

Andddd \(ab+bc+ca=abc\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\Sigma\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\Sigma\frac{\frac{\left(a^3+b^3\right)^2}{a^2+b^2}}{ab\left(a^3+b^3\right)}=\Sigma\frac{a^3+b^3}{ab\left(a^2+b^2\right)}\ge\Sigma\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab\left(a^2+b^2\right)}=\Sigma\frac{a^2+b^2}{ab\left(a+b\right)}\)

\(\ge\Sigma\frac{\frac{\left(a+b\right)^2}{2}}{ab\left(a+b\right)}=\Sigma\frac{a+b}{2ab}=\frac{1}{2}\Sigma\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Dấu "=" xảy ra khi a=b=c=3 

27 tháng 8 2021

Tùy bạn làm được câu nao thì làm nhưng mà  đừng làm tắt.

NV
27 tháng 8 2021

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

NV
26 tháng 12 2020

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có hai số cùng phía so với 2, không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab+4\ge2a+2b\)

\(\Leftrightarrow abc+4c\ge2ac+2bc\)

\(\Rightarrow VT\ge a^2+b^2+c^2+2ac+2bc-4c+4\)

\(VT\ge2ab+c^2-4c+4+2bc+2ac\)

\(VT\ge2\left(ab+bc+ca\right)+\left(c-2\right)^2\ge2\left(ab+bc+ca\right)\)

Dấu "=" xảy ra khi \(a=b=c=2\)

22 tháng 4 2020

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)

Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)

28 tháng 11 2019

Áp dụng BĐT Cauchy- schwarz:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)

\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}\)\(+\frac{1}{ab+bc+ca}\)

\(+\frac{2007}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{6030}{\left(a+b+c\right)^2}\ge670\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

23 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\((ab+a+1)^2 \le (a+b+c) \left( a+ a^2b+ \frac 1c \right) = (a+b+c)(a+a^2b+ab)\)

\(\Rightarrow \dfrac{a}{(ab+a+1)^2} \ge \dfrac{a}{(a+b+c)(a+a^2b+ab)}= \dfrac{1}{(a+b+c)(1+ab+b)}\)

Thiết lập các BĐT tương tự rồi cộng theo vế ta có:

\(\sum \dfrac{a}{(ab+a+1)^2} \ge \dfrac{1}{a+b+c} \sum \dfrac{1}{ab+b+1}= \dfrac{1}{a+b+c}\)

23 tháng 3 2017

c2: Áp dụng BĐT bunyakovsky:

\(\left(a+b+c\right)\left[\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right]\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\right)^2\)

Xét \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)

\(=\dfrac{ab+a+1}{ab+a+1}=1\)

do đó \(\left(a+b+c\right).VT\ge1\Leftrightarrow VT\ge\dfrac{1}{a+b+c}\)

dấu = xảy ra khi a=b=c=1