Cho tam giác ABC có trực tâm H ( -1,4) , tâm đường tròn ngoại tiếp I ( -3,0 ) trung điểm BC là M ( 0, -3) Tìm tọa độ các đỉnh .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)
Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)
Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).
I là trung điểm của AD, suy ra A(-1;7)
\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)
Tọa độ điểm B, C là nghiệm của hệ phương trình :
\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)
Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)
Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)
hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)
a) Từ giả thiết suy ra \(\overrightarrow{AB}=\left(2;2\right);\overrightarrow{BC}=\left(-1;-5\right)\)
Do \(2:\left(-1\right)\ne2:\left(-5\right)\) nên A, B, C không thẳng hàng hay A, B, C là ba đỉnh của một tam giác
b)
- Gọi \(G\left(x_1;y_1\right)\) là trọng tâm của tam giác ABC.
Khi đó \(x_1=\frac{1+3+3}{3}=2\) và \(y_1=\frac{2+4+\left(-1\right)}{3}=\frac{5}{3}\)
Suy ra \(G\left(2;\frac{5}{3}\right)\)
- Gọi \(H\left(x_2,y_2\right)\) là trực tâm của tam giác ABC. Khi đó H thỏa mãn :
\(\begin{cases}AH\perp BC\\CH\perp AB\end{cases}\) \(\Rightarrow\begin{cases}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{cases}\)
Từ đó, ta có hệ
\(\begin{cases}x_2+5y_2-6=0\\x_2+y_2-1=0\end{cases}\)
Giải hệ thu được ( \(x_2;y_2\)) \(=\left(-\frac{3}{4};\frac{7}{4}\right)\) do đó \(H\left(-\frac{3}{4};\frac{7}{4}\right)\)
- Gọi \(I\left(x_3,y_3\right)\) là tâm đường tròn ngoại tiếp tam giác ABC,
do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IH}\) nên ta có hệ :
\(\begin{cases}1-x_3+3-x_3+2-x_3=-\frac{3}{4}-x_3\\2-y_4+4-y_3-1-y_3=\frac{7}{4}-y_3\end{cases}\)
Giải hệ ta thu được \(\left(x_3,y_3\right)=\left(\frac{27}{8};\frac{13}{8}\right)\)
Do đó \(I\left(\frac{27}{8};\frac{13}{8}\right)\)