Chứng tỏ:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
1; 87 - 218 ⋮ 14
A = 87 - 218
A = - 131 (là số lẻ); 14 là số chẵn
Số lẻ không bao giờ chi hết cho số chẵn
2; 76 + 75 - 913 ⋮ 55
B = 76 + 75 - 913
B = 151 - 913
B = - 762 không chia hết cho 5 nên không chia hết cho 55
d; 109 + 108 + 107 ⋮ 555
109 + 108 + 107
= 217 + 107
= 324 < 555
109 + 108 + 107 < 555 (không thể chia hết cho 555)
e; 817 - 279 - 913 ⋮ 45
817 - 279 -913
= 538 - 913
= - 375
3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45
3x = 81
<=> x=4
b) x2=81
<=> x = 9;-9
c) (2x+3)3=125
<=> (2x+3)3=53
<=> 2x+3 = 5
<=> 2x=2
<=> x=1
d) (2x-3)4 = 625
<=>(2x-3)4=54
<=> 2x-3=5
<=> 2x=8
<=> x=4
a) 7⁶ + 7⁵ - 7⁴
= 7⁴.(7² + 7 - 1)
= 7⁴.55 ⋮ 55
Vậy (7⁶ + 7⁵ - 7⁴) ⋮ 55
b) 81⁷ - 27⁹ + 3²⁹
= (3⁴)⁷ - (3³)⁹ + 3²⁹
= 3²⁸ - 3²⁷ + 3²⁹
= 3²⁶.(3² - 3 + 3³)
= 3²⁶.(9 - 3 + 27)
= 3²⁶.33 ⋮ 33
Vậy (81⁷ - 27⁹ + 3²⁹) ⋮ 33
Bài 2:
a) Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\cdot10+2^{n+3}\cdot3⋮6\)
b) Ta có: \(4^{13}+32^5-8^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}\cdot5⋮5\)
c) Ta có: \(2014^{100}+2014^{99}\)
\(=2014^{99}\left(2014+1\right)\)
\(=2014^{99}\cdot2015⋮2015\)
Ta có:
A=405n + 2405 + m2
A=405n + (25)81 + m2
A=405n + 3281 + m2
Lại có:
+ Với n thuộc N và n khác 0 thì 405n luôn có chữ số tận cùng là 5. (1)
+ 3281 luôn có chữ số tận cùng là 2. (2)
+ Với m thuộc N thì m2 luôn có chữ số tận cùng là 0, 1, 4, 9, 6, 5. (3)
Từ (1), (2) và (3) suy ra 405n + 3281 + m2 có chữ số tận cùng là 7, 8, 1, 6, 3, 2.
Do đó 405n + 2405 + m2 có chữ số tận cùng là 7, 8, 1, 6, 3, 2.
Mà các số chia hết cho 10 khi và chỉ khi có chữ số tận cùng là 0 nên 405n + 2405 + m2 không chia hết cho 10.
Vậy A không chia hết cho 10 (đpcm).
81^7-27^9-9^13
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=(3^26.3^2)-(3^26.3^1)-(3^26.1)
=3^26.(9-3-1)
=3^22.(3^4.5)
=3^22.405 chia het cho 405
=> 81^7-27^9-9^13 chia het cho 405
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{36}=3^{22}.\left(3^6-3^5-3^4\right)\)
\(=3^{22}.405⋮405\)