K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2015

a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\)  hay \(x^2-2x-2=0\)  hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)

b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)

hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)

20 tháng 4 2022

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

10 tháng 3 2022

a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)

b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)

c, đk x khác - 2 ; 2 

\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)

\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)

Vậy pt vô nghiệm 

15 tháng 9 2023

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

1: Sửa đề: 3x-5

\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)

2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

=5x^2+14x^2+12x+8

3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)

5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)

12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

Bài 2:

\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)

  Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

  Vậy \(A_{Min}=-2\) khi \(x=-1\)

Bài 1:

a) Ta có: \(2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)