2. Cho a,b,c>0. Chứng minh: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
a) Đặt: \(b+c=x;c+a=y;a+b=z\)
Có: \(x+y-z=b+c+c+a-a-b=2c\)
=> \(c=\frac{x+y-z}{2}\)
Tương tự ta cũng có:
\(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2}\)
Có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
=\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)-3\right]\) (1)
Áp dụng bđt cô si ta có:
\(\frac{y}{x}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)
=> \(\left(1\right)\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
b) Có: \(\frac{a^2}{b+c}+\frac{b+c}{4}=\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\) (1)
VÌ: \(\left[2a-\left(b+c\right)\right]^2\ge0\)
=> \(\left(2a\right)^2+\left(b+c\right)^2\ge4a\left(b+c\right)\)
=> \(\left(1\right)\ge\frac{4a\left(b+c\right)}{4\left(b+c\right)}=a\)
Hay: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\Rightarrow\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\) (2)
Tương tự ta cũng có: \(\frac{b^2}{c+a}\ge b-\frac{c+a}{4}\) (3)
\(\frac{c^2}{a+b}\ge c-\frac{a+b}{4}\) (4)
Cộng vế với vế (2);(3);(4) ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\left(\frac{b+c+c+a+a+b}{4}\right)=\left(a+b+c\right)-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)
áp dụng dbt cosi cho 2 số:\(\frac{a^3}{b^2}\)va b ta duoc :
\(\frac{a^3}{b^2}\)+a\(\ge\)2\(\sqrt{\frac{a^3}{b^2}.a}\)=2\(\frac{a^2}{b}\)
CMTT:\(\frac{b^3}{c^2}\)+b\(\ge\)2\(\frac{b^2}{c}\)
\(\frac{c^3}{a^2}\)+c\(\ge\)2\(\frac{c^2}{a}\)
\(\Rightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)+(a+b+c)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\))
\(\Leftrightarrow\)\(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{c^3}{a^2}\)\(\ge\)2(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)) - (a+b+c) (1)
Ap dụng bdt cosi cho các số dương , ta được:
\(\frac{a^2}{b}\)+\(b\)\(\ge\)2\(\sqrt{\frac{a^2}{b}.b}\)=2a
CMTT: \(\frac{b^2}{c}\)+c\(\ge\)2b
\(\frac{c^2}{a}\)+a\(\ge\)2c
\(\Rightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)+(a+b+c) \(\ge\)2(a+b+c)
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\)\(\ge\)a+b+c
\(\Leftrightarrow\)\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) _ (a + b + c ) \(\ge\)0
Do Đó:TỪ (1) ta co : \(\frac{a^3}{b^2}\)+\(\frac{b^3}{c^2}\)+\(\frac{b^3}{c^2}\)\(\ge\)(\(\frac{a^2}{b}\)+\(\frac{b^2}{c}\)+\(\frac{c^2}{a}\) )
Xét hiệu hai vế:
BĐT \(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left(a+b+c-b-c-a\right)\ge0\)
\(\Leftrightarrow\left(\frac{a^3}{b^2}-\frac{a^2b}{b^2}\right)+\left(\frac{b^3}{c^2}-\frac{b^2c}{c^2}\right)+\left(\frac{c^3}{a^2}-\frac{c^2a}{a^2}\right)-\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]\ge0\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}\left(a-b\right)-\left(a-b\right)\right)+\left(\frac{b^2}{c^2}\left(b-c\right)-\left(b-c\right)\right)+\left(\frac{c^2}{a^2}\left(c-a\right)-\left(c-a\right)\right)\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a-b\right)^2}{b^2}+\frac{\left(b+c\right)\left(b-c\right)^2}{c^2}+\frac{\left(c+a\right)\left(c-a\right)^2}{a^2}\ge0\)
BĐT này đúng với mọi a,b,c > 0 nên ta có Q.E.D
Dấu "=" xảy ra khi a =b =c
P/s: Toán 7 gì mà khó thế nhỉ??Mình cũng không chắc đâu nha!
hơn 1 năm rồi không ai làm :'(
a) Áp dụng bđt Cauchy ta có :
\(a+b\ge2\sqrt{ab}\)(1)
\(b+c\ge2\sqrt{bc}\)(2)
\(c+a\ge2\sqrt{ca}\)(3)
Nhân (1), (2), (3) theo vế
=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)
=> đpcm
Dấu "=" xảy ra <=> a=b=c
Áp dụng bất đẳng thức Cô-si ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
mình nghĩ đề bài sai một chỗ :\(\frac{a^2}{b^2}\)chứ ko phải là \(\frac{a}{b^2}\)
Đặt b + c = x ; c + a = y ; a + b = z ; P = a/b+c + b/c+a + c/a+b
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3)
Áp dụng BĐT a/b + b/a ≥ 0 hoặc Cô-si cũng được :
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm)
Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c