K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

\(\sqrt{x+11}-\sqrt{10-3x}=\sqrt{1-x}\left(1\ge x\ge-11\right)\)

\(\Leftrightarrow\left(x+11\right)+\left(10-3x\right)-2\sqrt{\left(x+11\right)\left(10-3x\right)}=1-x\\ \Leftrightarrow-2x+21-2\sqrt{-3x^2-23x+110}=1-x\\ \Leftrightarrow-2\sqrt{-3x^2-23x+110}=x-20\\ \Leftrightarrow4\left(-3x^2-23x+110\right)=x^2-40x+400\\ \Leftrightarrow-12x^2-92x+440=x^2-40x+400\\ \Leftrightarrow13x^2+52x-40=0\)

\(\Delta=52^2-4\cdot\left(-40\right)\cdot13=4784>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\sqrt{299}-52}{26}\\x=\dfrac{4\sqrt{299}-52}{26}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\sqrt{299}-26}{13}\\x=\dfrac{2\sqrt{299}-26}{13}\end{matrix}\right.\)

Tick nha

31 tháng 5 2021

undefinedChúc bạn học tốt

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Ta có:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Dấu "=" xảy ra khi và chỉ khi:

\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)

Vậy nghiệm của pt là \(x\ge8\)

2 tháng 1 2022

ĐKXĐ : \(1\le x\le3\)

Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)

<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)

<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)

Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)

Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)

Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)

mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2) 

Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)

Vậy x = 2 là nghiệm bất phương trình

AH
Akai Haruma
Giáo viên
30 tháng 5 2022

Lời giải:
ĐKXĐ: $\frac{2}{3}\leq x\leq 6$

PT $\Leftrightarrow 3(\sqrt{3x-2}-2)+x(\sqrt{6-x}-2)=2(2-x)$

$\Leftrightarrow (2-x)(2-\frac{x}{\sqrt{6-x}+2}+\frac{9}{\sqrt{3x-2}+2})=0$

Với $\frac{2}{3}\leq x\leq 6$ thì $2+\frac{9}{\sqrt{3x-2}+2}\geq \frac{7}{2}>3$ còn $\frac{x}{\sqrt{6-x}+2}\leq \frac{6}{2}=3$ nên biểu thức $2-\frac{x}{\sqrt{6-x}+2}+\frac{9}{\sqrt{3x-2}+2}>0$

$\Rightarrow 2-x=0$

$\Leftrightarrow x=2$ (tm)

9 tháng 2 2023

Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á

Đk: \(-7\le x\le10\)

\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)

\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)

\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)

Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:

\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)

Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.

9 tháng 2 2023

`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1`     `ĐK: -7 <= x <= 10`

Đặt `\sqrt{10-x}-\sqrt{x+7}=t`

`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`

`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`

Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`

`<=>2t+17-t^2=2`

`<=>t^2-2t-15=0`

`<=>[(t=5),(t=-3):}`

`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`

  `<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)

`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`

  `<=>-x^2+3x+70=16`

  `<=>[(x=9),(x=-6):}` (t/m)

Vậy `S={-6;9}`

15 tháng 3 2021

Bài 1:

a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)

\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)

\(=\sqrt{2}\)

b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2\)

15 tháng 3 2021

Bài 2:

a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

b) ĐKXĐ: \(x\ne\pm2\)

Với \(x\ne\pm2\), ta có:

\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)

\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)

\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)

\(\Rightarrow x^2-4=8-x\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)

Vậy phương trình có tập nghiệm là: S ={3; -4}

9 tháng 8 2019

bình phương lên đi bạn

9 tháng 8 2019

ĐK:  x >= -1

Bình phương hai vế ta có:

\(x+1+2\sqrt{\left(x+1\right)\left(x+10\right)}+x+10=x+2+2\sqrt{\left(x+2\right)\left(x+5\right)}+x+5\)

Rút gọn

\(2x+11+2\sqrt{\left(x+1\right)\left(x+10\right)}=2x+7+2\sqrt{\left(x+2\right)\left(x+5\right)}\)

<=> \(4+2\sqrt{\left(x+1\right)\left(x+10\right)}=2\sqrt{\left(x+2\right)\left(x+5\right)}\)

<=> \(2+\sqrt{\left(x+1\right)\left(x+10\right)}=\sqrt{\left(x+2\right)\left(x+5\right)}\)

Bình phương hai vế 

\(4+4\sqrt{x^2+11x+10}+x^2+11x+10=x^2+7x+10\)

\(\Leftrightarrow4\sqrt{x^2+11x+10}+4x+4=0\)

\(\Leftrightarrow\sqrt{x^2+11x+10}+x+1=0\)  ( đến đây bạn có thể chuyển x+1 sang vế khác đặt điều kiện rồi bình phương hai vế cũng có thể làm theo cách dưới như của mình)

Mà \(x\ge-1\)

khi đó: \(\sqrt{x^2+11x+10}+x+1\ge0\)

Dấu "=" xảy ra <=> x=-1 thỏa mãn

Vậy x=-1