Cho hai biểu thức: A= \(\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
B= \(\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right)\cdot\frac{4\sqrt{x}+12}{\sqrt{x}}\)
a. Rút gọn A và B
b. Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
a) Biểu thức A :
\(A=\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}.\sqrt{4}-\sqrt{7}.\sqrt{9}+\frac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}.2-\sqrt{7}.3+\sqrt{7}+1-\sqrt{7}-1\)(do \(\sqrt{7};1>0\))
\(=-\sqrt{7}\)
Biểu thức B :
ĐKXĐ : \(x\ge0;x\ne9\)
Ta có : \(B=\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right).\frac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\frac{\sqrt{x}-3+\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\frac{8}{\sqrt{x}-3}\)
a, \(A=\sqrt{28}-\sqrt{63}+\frac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x}-3}\right)\frac{4\sqrt{x}+12}{\sqrt{x}}\)ĐK : \(x>0;x\ne9\)
\(=\left(\frac{\sqrt{x}-3+\sqrt{x}+3}{x-9}\right)\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\frac{8\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}=\frac{8}{\sqrt{x}-3}\)
b, Ta có : \(A>B\Rightarrow-\sqrt{7}>\frac{8}{\sqrt{x}-3}\Rightarrow-\sqrt{7}>\frac{8}{\sqrt{x}-3}\)
tự giải bft này nhé