K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

 

\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-\sqrt{x}}\left(1\right)\\x^3\left(9y^2+1\right)+4\left(x^2+1\right)\sqrt{x}=10\left(2\right)\end{cases}\)

Điều kiện \(x\ge0\)

Nếu x=0, hệ phương trình không tồn tại

Vậy xét x>0

\(\Leftrightarrow3y+3y\sqrt{9y^2+1}=\frac{\sqrt{x+1}+\sqrt{x}}{x}\)

\(\Leftrightarrow3y+3y\sqrt{\left(3y\right)^2+1}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\sqrt{\left(\frac{1}{\sqrt{x}}\right)^2+1}\) (3)

Từ (1) và x>0 ta có y>0. Xét hàm số \(f\left(t\right)=t+t.\sqrt{t^2+1},t>0\)

Ta có \(f'\left(t\right)=1+\sqrt{t^2+1}+\frac{t^2}{\sqrt{t^2+1}}>0\). Suy ra \(f\left(t\right)\) luôn đồng biến trên \(\left(0;+\infty\right)\)

Phương trình (3) \(\Leftrightarrow f\left(3y\right)=f\left(\frac{1}{\sqrt{x}}\right)\Leftrightarrow3y=\frac{1}{\sqrt{x}}\)

Thế vào phương trình (2) ta được : \(x^3+x^2+4\left(x^2+1\right)\sqrt{x}=10\)

Đặt \(g\left(x\right)=x^3+x^2+4\left(x^2+1\right)\sqrt{x}-10,x>0\)

Ta có \(g'\left(x\right)>0\) với \(x>0\) \(\Rightarrow g\left(x\right)\) là hàm số đồng biến trên khoảng (\(0;+\infty\))

Ta có g(1)=0

vậy phương trình g(x) = 0 có nghiệm duy nhất x = 1

Với x=1 => \(y=\frac{1}{3}\)

Vậy kết luận : Hệ có nghiệm duy nhất (\(1;\frac{1}{3}\))

 

6 tháng 8 2016

bạn đăng 1 lúc nhiều v

k ai dám làm đâu

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)

22 tháng 5 2016

1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)

\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)

23 tháng 5 2016

mk ra câu 1 r b lm giúp mk câu 2,3 đc k

 

1 tháng 3 2018

Đặt \(a=x\sqrt{y}\\ b=y\sqrt{x}\left(a,b>0\right)\)

hpt <=> \(\hept{\begin{cases}2\left(1+a\right)^2=9b\\2\left(1+b\right)^2=9a\end{cases}}\)

lấy 2 cái trừ nhau ta được

\(2\left(a-b\right)\left(a+b+2\right)=-9\left(a-b\right)\)

\(\left(a-b\right)\left(2a+2b+13\right)=0\)

Vì a,b >o

nên a=b

30 tháng 4 2020

\(\hept{\begin{cases}2\left(1+x\sqrt{y}\right)^2=9y\sqrt{x}\\2\left(1+y\sqrt{x}\right)^2=9x\sqrt{y}\end{cases}\left(I\right)}\)

ĐK: x >=0; y >=0

Đặt \(a=x\sqrt{y};y=b\sqrt{x}\). ĐK a>=0; b>=0. Hệ (I) trở thành \(\hept{\begin{cases}2\left(1+a\right)^2=9b\left(1\right)\\2\left(1+b\right)^2=9a\left(2\right)\end{cases}}\)

Lấy (1) trừ đi (2) ta được: \(2\left(1+a\right)^2-2\left(1+b\right)^2=9\left(b-a\right)\)

<=> \(2\left(a-b\right)\left(a+b+2\right)+9\left(a-b\right)=0\)

<=> \(\left(a-b\right)\left(2a+2b+13\right)=0\)

<=> a=b (vì 2a+2b+13 >0 với mọi a,b>0)

Thay a=b vào (1) ta có:

\(2\left(1+a\right)^2=9a\Leftrightarrow\orbr{\begin{cases}a=2\Rightarrow b=2\left(tm\right)\left(3\right)\\a=\frac{1}{2}\Rightarrow b=\frac{1}{2}\left(tm\right)\left(4\right)\end{cases}}\)

(3) => \(\hept{\begin{cases}x\sqrt{y}=2\\y\sqrt{x}=2\end{cases}\Leftrightarrow x=y=\sqrt[3]{4}}\)

(4) => \(\hept{\begin{cases}x\sqrt{y}=\frac{1}{2}\\y\sqrt{x}=\frac{1}{2}\end{cases}\Leftrightarrow x=y=\sqrt[3]{\frac{1}{4}}}\)

Vậy hệ phương trình có nghiệm \(\left(\sqrt[3]{4};\sqrt[3]{4}\right);\left(\sqrt[3]{\frac{1}{4}};\sqrt[3]{\frac{1}{4}}\right)\)

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

9 tháng 5 2020

\(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\left(1\right)\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\left(2\right)\end{cases}}\)

\(ĐK:x>-1;y\ge1\)

Đặt \(\sqrt{x+1}=u,\sqrt{y-1}=v\left(u>0,v\ge0\right)\Rightarrow\hept{\begin{cases}x=u^2-1\\y=v^2+1\end{cases}}\)

Khi đó, phương trình (1) trở thành: \(\left(u^2-v^2-2\right)^2+4=3\left(v^2+1\right)-5\left(u^2-1\right)+2uv\)

\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4-3v^2+5u^2-8-2uv=0\)

\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4\left(u^2-v^2-2\right)+4+u^2+v^2-2uv=0\)

\(\Leftrightarrow\left(u^2-v^2\right)^2+\left(u-v\right)^2=0\)\(\Leftrightarrow\left(u-v\right)^2\left[\left(u+v\right)^2+1\right]=0\)

Dễ thấy \(\left(u+v\right)^2+1>0\)nên \(\left(u-v\right)^2=0\Leftrightarrow u=v\)

hay \(\sqrt{x+1}=\sqrt{y-1}\Leftrightarrow x+1=y-1\Leftrightarrow y=x+2\)

Từ (2) suy ra \(3xy-5y-6x+11=5\sqrt{x^3+1}\)(3)

Thay y = x + 2 vào (3), ta được: \(3x\left(x+2\right)-5\left(x+2\right)-6x+11=5\sqrt{x^3+1}\)

\(\Leftrightarrow3x^2+6x-5x-10-6x+11=5\sqrt{x^3+1}\)

\(\Leftrightarrow3x^2-5x+1=5\sqrt{x^3+1}\)

\(\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)-5\sqrt{x+1}\sqrt{x^2-x+1}=0\)

\(\Leftrightarrow\left(3\sqrt{x^2-x+1}+\sqrt{x+1}\right)\left(\sqrt{x^2-x+1}-2\sqrt{x+1}\right)=0\)

Dễ thấy \(3\sqrt{x^2-x+1}+\sqrt{x+1}>0\forall x>-1\)nên \(\sqrt{x^2-x+1}=2\sqrt{x+1}\)

\(\Leftrightarrow x^2-x+1=4\left(x+1\right)\Leftrightarrow x^2-5x-3=0\)

Giải phương trình trên tìm được hai nghiệm là \(\frac{5\pm\sqrt{37}}{2}\left(TMĐK\right)\)

+) Với \(x=\frac{5+\sqrt{37}}{2}\Rightarrow y=\frac{9+\sqrt{37}}{2}\)

+) Với \(x=\frac{5-\sqrt{37}}{2}\Rightarrow y=\frac{9-\sqrt{37}}{2}\)

Vậy hệ phương trình có 2 nghiệm\(\left(x;y\right)\in\left\{\left(\frac{5+\sqrt{37}}{2};\frac{9+\sqrt{37}}{2}\right);\left(\frac{5-\sqrt{37}}{2};\frac{9-\sqrt{37}}{2}\right)\right\}\)