rút gọn biểu thức sau
P=(\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\))\(:\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\left(\sqrt{a}+4\right)}\)
\(=\dfrac{-8\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}\cdot\dfrac{\sqrt{a}+4}{-\left(\sqrt{a}+1\right)}=\dfrac{8}{\sqrt{a}-4}\)
b: \(=\left(12\sqrt[3]{2}+2\sqrt[3]{2}-2\sqrt[3]{2}\right)\cdot\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
\(=12\sqrt[3]{2}\cdot5\sqrt[3]{4}-12\sqrt[3]{2}\cdot3\sqrt[3]{\dfrac{1}{2}}\)
\(=12\cdot5\cdot2-12\cdot3=120-36=84\)
\(ĐKXĐ:a\ge0;a\ne4\)
Vế thứ nhất mẫu thức chung là \(\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\)
chỗ \(-\frac{4a}{a-4}\)chuyển thành \(\frac{4a}{4-a}\)tách ra được \(\frac{4a}{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}\) ( sử dụng hằng đẳng thức hiệu hai bình phương)
vế thứ hai mẫu thức chung là \(\sqrt{a}\left(2-\sqrt{a}\right)\)
tách cái sau ra \(\frac{\sqrt{a}+3}{\sqrt{a}\left(2-\sqrt{a}\right)}\) thì cái trước phải nhân cả tử và mẫu với \(\sqrt{a}\)
a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)
\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)
\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)
b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)
\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)
c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)
\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)
P= (\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\)):\(\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
=\(\left(\frac{3\sqrt{a}\left(\sqrt{a}-4\right)}{a-16}+\frac{\sqrt{a}\left(\sqrt{a}+4\right)}{a-16}-\frac{4a+8}{a-16}\right):\left(\frac{\sqrt{a}-4-2\sqrt{a}-5}{\sqrt{a}-4}\right)\)
= \(\left(\frac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{a-16}\right):\left(\frac{-\sqrt{a}-9}{\sqrt{a}-4}\right)\)
=\(\left(\frac{-8\sqrt{a}-8}{a-16}\right).\left(\frac{\sqrt{a}-4}{-\sqrt{a}-9}\right)=\frac{8\sqrt{a}+8}{\left(\sqrt{a}+4\right).\left(\sqrt{a}+9\right)}=\frac{8\sqrt{a}+8}{a+13\sqrt{a}+36}\)