Tìm GTLN và GTNN : f(x) = 2x3 + \(\frac{3}{x^2}\) + 5 trên đoạn [ 0;3 ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=1-\sqrt{2}\sin x=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{\pi}{4}\\ y\left(0\right)=\sqrt{2};y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1;y\left(\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\\ \Rightarrow y_{max}=y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1\\ y_{min}=y\left(0\right)=\sqrt{2}\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1. Vì \(x^2\ge0\left(\text{ với mọi x}\right)\)(1)
=>\(x^2+2\ge2>0\)
=>\(\left(x^2+2\right)^2>0\)(2)
Từ (1) và (2) =>\(\frac{x^2}{\left(x^2+2\right)^2}\le\frac{0}{\left(x^2+2\right)^2}=0\) hay A\(\le0\)
=> giá trị lớn nhất của A là 0, khi và chỉ khi \(x^2=0\) <=> x=0.
Chọn C.
f'(x) = 2xex + ex(x2 – 3) = 0
Ta có f(0) = -3
f(1) = -2e = m
f(2) = e2 = M
Suy ra (m2 – 4M)2016 = 0
Giải:
(Hàm số không có tập xác định bao gồm \(0\) nên phải là \((0,3]\))
\(f'(x)=6x^2-\frac{6}{x^3}=\frac{6(x^5-1)}{x^3}=0\Leftrightarrow \) \(x=1\)
Bây giờ xét:
\(f(1)=10\)
\(f(3)=\frac{178}{3}\)
Vậy \(\left\{\begin{matrix} f_{\min}=10\Leftrightarrow x=1\\ f_{\max}=\frac{178}{3}\Leftrightarrow x=3\end{matrix}\right.\)