cho tam giac ABC vuong tai A, AB< AC. D thuoc AC; M, N,E la trung diem cua BD, BC,CD.
a) C/m: DMNE là hbh.
b) C/m: AENM là htc.
c) Xác định D để BMNE là hình thoi
ai giai giup mih cau C vs. huhu...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có :
\(\widehat{EAD:}chung\)
\(AB=AC\)
\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)
\(\Rightarrow BD=CE\left(dpcm\right)\)
b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :
\(CE=BD\left(cmt\right)\)
\(\widehat{BEC}=\widehat{CDB}=90^o\)
\(BC:chung\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)
TRÔNG MÌNH VẬY THÔI NHƯNG LÀ FAN RUỘT CỦA SẾP TÙNG ĐẤY !
SKY ZÔ KẾT BẠN NHA !!!!!!!!!!!
VÌ SẾP TÙNG MUÔN NĂM !!!!!!!
Chỗ câu hỏi của người ta cmt gì liên quan quá vậy @SN ?
A B C H D E
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AH\): chung
\(\widehat{AHB}=\widehat{AHC}=90\)độ (gt)
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
b) Chứng minh câu a \(\Rightarrow HB=HC\)(hai cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
c) Xét \(\Delta ADH\)và \(\Delta AEH\)có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(AH\): chung
\(\widehat{ADH}=\widehat{AEH}=90\)độ (gt)
\(\Rightarrow\Delta ADH=\Delta AEH\left(g.c.g\right)\)
\(\Rightarrow DA=EA\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại \(A\)
-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)
-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )
- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)
2. Xét tam giác ABH và tam giác ACK có :
AB = AC (tam giác ABC cân tại A)
Góc A chung
góc AKC = góc AHB ( = 90 độ )
=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)
=>AH = AK ( cặp cạnh t/ứng )
a: Xét ΔCDB có
E là trung điểm của CD
N là trung điểm của CB
Do đó: EN là đường trung bình
=>EN//DM và EN=DM
hay DMNE là hình bình hành
b: Xét ΔBDC có
M là trung điểm của BD
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//CD
hay MN//AE
Xét ΔDBC có
M là trung điểm của BD
E là trung điểm của CD
Do đó: ME là đường trung bình
=>ME=BC/2(1)
Ta có: ΔABC vuông tại A
mà AN là đường trung tuyến
nên AN=BC/2(2)
Từ (1) và (2) suy ra AN=ME
Xét tứ giác AMNE có MN//AE
nên AMNE là hình thang
mà AN=ME
nên AMNE là hình thang cân