Cho a+b+c+d=0. Chứng minh rằng :
a3+b3+c3+d3=3(b+c)(ad-bc)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c+d=0 => a+d= -b-c; (a+b)3=a3+b3+3ab(a+b) => a3+b3=(a+b)3-3ab(a+b)
a3+d3+b3+d3
=(a+d)3- 3ad(a+d)+ (b+c)3-3bc(b+c) (1)
Do a+d=-b-c nên pt (1) trở thành:
-(b+c)3-3ad(-b-c)+ (b+c)3-3bc(b+c)
=3ad(b+c)-3bc(b+c)
=3(b+c)(ad-bc) <đccm>
Ta có:
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)
\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))
\(=3\left(c+d\right)\left(ab-cd\right)\)
Vậy đẳng thức được chứng minh.
\(\Leftrightarrow a^3+b^3+c^3-3abc>=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc>=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)>=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)(vì a+b+c>0)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2>=0\)(luôn đúng)
\(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
Vì \(a,b,c>0\Leftrightarrow a+b+c>0\)
Lại có \(a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
Nhân vế theo vế ta được đpcm
Dấu \("="\Leftrightarrow a=b=c\)
a3+b3+c3= (a+b)3-3ab(a+b)+c3
Thay a+b=-c vào, ta được:
a3 + b3 +c3 = (-c)3 -3ab(-c) +c3 = 3abc (đpcm)
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$
Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé.
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
ta có : a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)3=-(c+d)3
=> a3+b3+3ab(a+b)=-c3-d3-3cd(c+d)
=> a3+b3+c3+d3=-3ab(a+b)-3cd(c+d)
=> a3+b3+c3+d3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
=> a3 +b3+c3+d3==3(c+d)(ab-cd)
(dpcm)