\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}\cdot.........\cdot\frac{1}{99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
99.101 mới đúg nhé
=\(\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)
=\(\frac{2^2.3^2.4^2......100^2}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}=\frac{\left(2.3.4....100\right).\left(2.3.4....100\right)}{\left(1.2.3....99\right).\left(3.4.5......101\right)}\)
=\(\frac{100.2}{1.101}=\frac{200}{101}\)
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}=\frac{\left(1.2.3.4...50\right)^2}{1.2.3.4...50.51}=\frac{1.2.3...50}{51}=\frac{50!}{51}\)
\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{50^2}{49\cdot51}\)
\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\frac{5^2}{4\cdot6}\cdot\frac{7^2}{5\cdot7}\cdot\cdot\cdot\frac{50^2}{49\cdot51}\)
\(=\frac{2}{1}\cdot\frac{50}{51}=\frac{100}{51}\)
\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2015.2015}{2014.2016}\)
\(B=\frac{2.3...2015}{1.2...2014}.\frac{2.3...2015}{3.4...2016}\)
\(B=2015.\frac{1}{1008}\)
\(B=\frac{2015}{1008}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)