K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

ta có:

khi khóa k ngắt:

Rnt R3

Uv=U3=6V

\(\Rightarrow I_3=\frac{U_3}{R_3}=1.2A\)

mà I3=I2 nên I2=1.2A

U=U2+U3

\(\Leftrightarrow U=I_2R_2+I_3R_3=1.2R_2+6\left(1\right)\)

khi khóa k đóng

Rnt (R1//R2)

Uv=U3=8V

\(\Rightarrow I_3=\frac{U_3}{R_3}=1.6A\)

\(\Rightarrow I_1+I_2=1.6A\)

\(\Leftrightarrow\frac{U_1}{R_1}+\frac{U_2}{R_2}=1.6\)

\(\Leftrightarrow\frac{U_1}{10}+\frac{U_2}{R_2}=1.6\)

mà U1=U2 nên:

\(\frac{U_1}{10}+\frac{U_1}{R_2}=1.6\)

\(\Leftrightarrow\frac{U_1R_2+10U_1}{10R_2}=1.6\)

\(\Leftrightarrow U_1\left(R_2+10\right)=16R_2\)

\(\Rightarrow U_1=\frac{16R_2}{R_2+10}\left(2\right)\)

ta lại có:

U=U3+U1

\(\Leftrightarrow U=8+U_1\)

thế (2) vào phương trình trên ta có:

\(U=8+\frac{16R_2}{R_2+10}\)

\(\Leftrightarrow U=\frac{8R_2+80+16R_2}{R_2+10}\)

\(\Leftrightarrow U=\frac{24R_2+80}{R_2+10}\left(3\right)\)

do U không đổi nên ta có:

(1)=(3)

\(\Leftrightarrow1.2R_2+6=\frac{24R_2+80}{R_2+10}\)

\(\Leftrightarrow\left(1.2R_2+6\right)\left(R_2+10\right)=24R_2+80\)

\(\Leftrightarrow1.2R^2_2+6R_2+12R_2+60=24R_2+80\)

\(\Leftrightarrow1.2R^2_2-6R_2-20=0\)

giải phương trình ta có:
R2=7.3Ω (loại R2=-2.3Ω do âm)

\(\Rightarrow U=14.76V\)

 

5:

(d) vuông góc 2x-y-2018=0

=>(d): x+2y+c=0

(C): x^2+4x+4+y^2-6y+9-25=0

=>(x+2)^2+(y-3)^2=25

=>R=5; I(-2;3)

Theo đề, ta có: d(I;(d))=5

=>\(\dfrac{\left|1\cdot\left(-2\right)+2\cdot3+c\right|}{\sqrt{5}}=5\)

=>|c+4|=5căn 5

=>c=5căn5-4 hoặc c=-5căn 5-4

5:

d: \(A=\dfrac{9\left(x_1+x_2\right)+10-3m}{18\left(x_1x_2+2\right)^2+1}\)

\(=\dfrac{9\cdot\dfrac{m-2}{3}+10-3m}{18\cdot\left(\dfrac{m-6}{3}+2\right)^2+1}=\dfrac{3m-6+10-3m}{18\cdot\left(\dfrac{m-6+6}{3}\right)^2+1}\)

\(=\dfrac{4}{18\cdot\dfrac{m^2}{9}+1}=\dfrac{4}{2m^2+1}< =\dfrac{4}{1}=4\)

Dấu = xảy ra khi m=0

25 tháng 9 2021

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}\)

=\(\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{19}{81.100}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

=\(1-\dfrac{1}{100}=\dfrac{99}{100}\)

Mà \(\dfrac{99}{100}< 1\) nên \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}< 1\)

26 tháng 8 2021

\(6x^2+xy-7x-2y^2+7y-5=-\left(y-2x-1\right)\left(2y+3x-5\right)\)

26 tháng 8 2021

\(6x^2+xy-7x-2y^2+7y-5=-2y\left(y-2x-1\right)-3x\left(y-2x-1\right)+5\left(y-2x-1\right)=-\left(y-2x-1\right)\left(2y+3x-5\right)\)

Bài 5: 

a: Xét ΔBEC và ΔADC có 

\(\widehat{C}\) chung

\(\widehat{EBC}=\widehat{DAC}\)

Do đó: ΔBEC\(\sim\)ΔADC

 

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

20 tháng 12 2023

38 + 48 + 58 + ... + 8008 (cùng số mũ)

⇒ (3.4.5.6.7......800)8

Phép này chỉ làm được đến đây thôi, chứ nhân thì ra số dài lắm bạn.

15 tháng 12 2023

Bài IV:

1: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

2: Xét (O) có

MA,MB là các tiếp tuyến
Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(3\right)\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD tại C

=>AC\(\perp\)DM tại C

Xét ΔADM vuông tại A có AC là đường cao

nên \(MC\cdot MD=MA^2\left(4\right)\)

Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)

3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc HAM

Xét ΔAHM có AI là phân giác

nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)

Xét ΔOHA vuông tại H và ΔOAM vuông tại A có 

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOAM

=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)

=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)

Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)

=>\(HO\cdot IM=IO\cdot IH\)

AH
Akai Haruma
Giáo viên
25 tháng 3

Bài 2:

a. $x^2=12y^2+1$ lẻ nên $x$ lẻ 

Ta biết một scp khi chia 8 dư $0,1,4$. Mà $x$ lẻ nên $x^2$ chia $8$ dư $1$

$\Rightarrow 12y^2+1\equiv 1\pmod 8$

$\Rightarrow 12y^2\equiv 0\pmod 8$

$\Rightarrow y^2\equiv 0\pmod 2$

$\Rightarrow y$ chẵn. Mà $y$ nguyên tố nên $y=2$.

Khi đó: $x^2=12y^2+1=12.2^2+1=49\Rightarrow x=7$ (tm)

AH
Akai Haruma
Giáo viên
25 tháng 3

Bài 2:

b.

$x^2=8y+1$ nên $x$ lẻ. Đặt $x=2k+1$ với $k$ tự nhiên.

Khi đó: $8y+1=x^2=(2k+1)^2=4k^2+4k+1$

$\Rightarrow 2y=k(k+1)$

Vì $(k,k+1)=1, k< k+1$ và $y$ nguyên tố nên xảy ra các TH sau:

TH1: $k=2, k+1=y\Rightarrow y=3\Rightarrow x=5$ (tm) 

TH2: $k=1, k+1=2y\Rightarrow y=1$ (vô lý) 

TH3: $k=y, k+1=2\Rightarrow y=1$ (vô lý)

Vậy $(x,y)=(5,3)$ là đáp án duy nhất thỏa mãn.