K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

\(x\ne2k\pi;\left(k\in Z\right)\)

NV
6 tháng 6 2021

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6 tháng 6 2021

cho hỏi cái này tí nha    \(sin\alpha\)=1/2  và \(cos\alpha\)=\(\dfrac{-\sqrt{3}}{2}\)

thì góc đó là \(\alpha=?\pi\)

NV
2 tháng 11 2021

\(y=\dfrac{sinx+1}{sinx}\)

ĐKXĐ: \(sinx\ne0\Rightarrow x\ne k\pi\)

\(y=\dfrac{sin2x+cosx}{tanx-sinx}\)

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\left(\dfrac{1}{cosx}-1\right)\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\)

\(\Rightarrow sin2x\ne0\)

\(\Rightarrow x\ne\dfrac{k\pi}{2}\)

5 tháng 11 2019

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

NV
6 tháng 11 2019

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

25 tháng 11 2023

a: ĐKXĐ: \(cosx-1\ne0\)

=>\(cosx\ne1\)

=>\(x\ne k2\Omega\)

b: ĐKXĐ: sin x-1>=0

=>sin x>=1

mà \(-1< =sinx< =1\)

nên sin x=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\)

c:

-1<=sin x<=1

=>-1+1<=sin x+1<=1+1

=>0<=sin x+1<=2

ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)

mà \(1+sinx>=0\)(cmt)

nên \(1-cosx>0\)

=>\(cosx< 1\)

mà -1<=cosx<=1

nên \(cosx\ne1\)

=>\(x\ne k2\Omega\)

NV
22 tháng 7 2020

d/

ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\frac{sin\left(3x-x\right)}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sin2x}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{2sinx.cosx}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\)

\(\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
22 tháng 7 2020

c/

ĐKXĐ: \(sin2x\ne0\)

\(\Leftrightarrow\frac{\frac{sinx}{cosx}-sinx}{sin^3x}=\frac{1}{cosx}\)

\(\Leftrightarrow sinx-sinx.cosx=sin^3x\)

\(\Leftrightarrow1-cosx=sin^2x\)

\(\Leftrightarrow1-cosx=1-cos^2x\)

\(\Leftrightarrow cos^2x-cosx=0\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\)