K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

A=11-10x-x2

   =-(x2+10x+25)+25+11=-(x+5)2+36\(\ge36\)

 

 

22 tháng 6 2016

dấu bằng xảy ra khi x=-5

 

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

1 tháng 2 2020

\(A=25x^2-20x+7\)

\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)

\(B=-x^2+2x-2\)

\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)

\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow x=1\)

Vậy \(maxB=-3\Leftrightarrow x=1\)

\(C=9x^2-12x\)

\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)

\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)

Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)

\(D=3-10x^2-4xy-4y^2\)

\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)

\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)

Vậy \(maxD=-3\Leftrightarrow x=y=0\)

\(E=4x-x^2+1\)

\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)

\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)

Dấu " = " xảy ra \(\Leftrightarrow x=2\)

Vậy \(maxE=5\Leftrightarrow x=2\)

18 tháng 9 2021

a) Vì \(\sqrt{x-5}\) ≥0

⇒ \(\sqrt{x-5}+7\) ≥ 7

Min A=7⇔x-5=0

             ⇔x=5

18 tháng 9 2021

b) Vì \(\sqrt{3x-5}\) ≥0

⇒ 8-\(\sqrt{3x-5}\) ≤8

Max=8⇔3x-5\(=\)0

           ⇔\(x=\dfrac{5}{3}\)

3 tháng 7 2023

đề bài của bài này là tính thuii ạ

3 tháng 7 2023

a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)

b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)

c) \(-x^3+9x^2-27x+27\)

\(=-\left(x^3-9x^2+27x-27\right)\)

\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)

d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)

k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)

f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)

\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

27 tháng 2 2018

a) Ta có 3 x − 1 10 x 2 + 2 x . 25 x 2 + 10 x + 1 1 − 9 x 2 = − 5 x + 1 2 x ( 3 x + 1 )  

b) Kết quả  = p . ( p − 3 ) 7

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

2 tháng 7 2021

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2

29 tháng 10 2023

a:

ĐKXĐ: \(x^2+3x>=0\)

=>x(x+3)>=0

=>\(\left[{}\begin{matrix}x>=0\\x< =-3\end{matrix}\right.\)

 \(\sqrt{16}-\sqrt{x^2+3x}=0\)

=>\(\sqrt{x^2+3x}=\sqrt{16}\)

=>x^2+3x=16

=>x^2+3x-16=0

\(\text{Δ}=3^2-4\cdot1\cdot\left(-16\right)=9+64=73>0\)

Do đó: Phương trình có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{73}}{2}\\x_2=\dfrac{-3+\sqrt{73}}{2}\end{matrix}\right.\)

b:

ĐKXĐ: \(x\in R\)

 \(3x-1-\sqrt{4x^2-12x+9}=0\)

=>\(\sqrt{\left(2x-3\right)^2}=3x-1\)

=>\(\left\{{}\begin{matrix}3x-1>=0\\\left(3x-1\right)^2=\left(2x-3\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(x+2\right)\left(5x-4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=\dfrac{4}{5}\left(nhận\right)\end{matrix}\right.\)

c:

ĐKXĐ: \(\left\{{}\begin{matrix}x^2-6x+8>=0\\2x^2-10x+11>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\x< =2\end{matrix}\right.\\\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=\dfrac{5+\sqrt{3}}{2}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=4\end{matrix}\right.\)

 \(\sqrt{2x^2-10x+11}=\sqrt{x^2-6x+8}\)

\(\Leftrightarrow2x^2-10x+11=x^2-6x+8\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=3(loại) hoặc x=1(nhận)

22 tháng 9 2021

\(A=\left|3-x\right|+8\ge8\)

\(minA=8\Leftrightarrow x=3\)

\(B=\left|x+2\right|-4\ge-4\)

\(minB=-4\Leftrightarrow x=-2\)

22 tháng 9 2021

cảm ơn hihi