Chứng minh rằng:
a/b + c/d = a+b/c+d
các bn giúp mik nhé mik sẽ tick cho các bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Bài làm:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
=> \(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
=>\(\frac{a^2+b^2}{a^2-b^2}=\frac{\left(kb\right)^2+b^2}{\left(kb\right)^2-b^2}=\frac{k^2b^2+b^2}{k^2b^2-b^2}=\frac{b^2\left(k^2+1\right)}{b^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(1)
=> \(\frac{c^2+d^2}{c^2-d^2}=\frac{\left(kd\right)^2+d^2}{\left(kd\right)^2-d^2}=\frac{k^2d^2+d^2}{k^2d^2-d^2}=\frac{d^2\left(k^2+1\right)}{d^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(2)
Từ (1) và (2) => đpcm
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
a-20=24-[b+c]
a+b+c=24+20
a+b+c=44
ta co a/2=b/4=c/5=a+b+c/2+4+5=44/11=4
a/2=4 =>a=4.2=8
b/4=4 =>b=4.4=16
c/5=4 =>c=4.5=20
Ta có: a; b; c tỉ lệ với 2; 4; 5 và a - 20=24 - (b + c)
\(\Rightarrow\) \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\) và a - 20=24 - (b + c)
Ta lại có: a - 20=24 - (b + c)
\(\Rightarrow\) \(a+b+c=44\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
Với \(\frac{a}{2}=4\Rightarrow a=8\)
Với \(\frac{b}{4}=4\Rightarrow b=16\)
Với \(\frac{c}{5}=4\Rightarrow c=20\)
Vậy \(a=8;b=16;c=20\)
Ta có : abc = 100.a + 80.b + c
= 83.a + 17.a + 80.b + c
Do \(\hept{\begin{cases}83a⋮83\\17a+80b+c⋮83\left(gt\right)\end{cases}}\)
=> abc \(⋮\) 83 (đpcm )
Bạn ghi sai đề rồi. Qui tắc cộng phân số là "qui đồng mẫu số trước"
Mình nghĩ đề là \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\). Mình làm theo đề này :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk
Ta có : \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\); mà \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\) (t/c tỉ lệ thức)
Do đó \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)
ko phải vậy đâu. cô mình cho đề này vs lại mình cũng có quyển đó sorry nha! nhưng mình vẫn sẽ tick cho bn