\(3n+1\) \(\vdots\) 2n - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
1) a3 + b3 + c3 – 3abc
Ta sẽ thêm và bớt 3a2b +3ab2 sau đó nhóm để phân tích tiếp
a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)
= (a + b)3 +c3 – 3ab(a + b + c)
= (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]
= (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
2) x5 – 1
Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm:
x5 – 1 = x5 – x + x – 1
= (x5 – x) + (x – 1)
= x(x4 – 1) + ( x – 1)
= x(x2 – 1)(x2 + 1) + (x - 1)
= x(x +1)(x – 1)(x2 + 1) + ( x – 1)
= (x – 1)[x(x + 1)(x2 + 1) + 1].
3) 4x4 + 81
Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:
4x4 + 81 = 4x4 + 36x2 + 81 – 36x2
= ( 2x2 + 9)2 – (6x)2
= (2x2 + 9 – 6x)(2x2 + 9 + 6x)
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)
Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)
\(=3^3.3^n+3.3^n+2^3.2^n+2^2.2^n=\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)=30.3^n+12.2^n=\)
\(=6\left(5.3^n+2.2^n\right)⋮6\)
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(9+3\right)+2^{n+2}\left(8+4\right)\)
\(=12.3^{n+1}+12.2^{n+2}=12.\left(3^{n+1}+2^{n+2}\right)\)
mà 12⋮6
\(\Rightarrow12.\left(3^{n+1}+2^{n+2}\right)⋮6\Rightarrow dpcm\)
Ta có :
\(3n+1⋮2n-3\Rightarrow2\left(3n+1\right)⋮2n-3\Rightarrow6n+2⋮2n-3\) (1)
Ta lại có:
\(2n-3⋮2n-3\Rightarrow3\left(2n-3\right)⋮2n-3\Rightarrow6n-9⋮2n-3\) (2)
Trừ (1) cho (2), ta được :
\(\left(6n+2\right)-\left(6n-9\right)⋮2n-3\)
\(\Rightarrow11⋮2n-3\)
\(\Rightarrow2n-3\inƯ\left(11\right)\)
\(\Rightarrow2n-3\in\left\{1;-1;11;-11\right\}\)
\(\Rightarrow2n\in\left\{4;2;14;-8\right\}\)
\(\Rightarrow n\in\left\{2;1;7;-4\right\}\)
Vậy \(n\in\left\{2;1;7;-4\right\}\)
đề là j có thiếu k v