Tìm x \(\in\) N biết :
a. 3x = 81 b. ( x + 1 )3 = 27 c. 7x+2 = 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(-27\right).\left(-28+128\right)=-27.100=-2700\)
2a)\(\left(x-3\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
b) \(\left(2x-1\right)^2=81\)
\(\sqrt{\left(2x-1\right)^2}=9\)
\(\left|2x-1\right|=9\)
\(\left[{}\begin{matrix}2x-1=9\\2x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
c) \(\left(2m+5\right)^3=-27\)
\(\sqrt[3]{\left(2m+5\right)^3}=-3\)
\(2m+5=-3\)
\(m=-4\)
d) \(\left(3x-2\right)^3=64\)
tương tự câu c
a) \(3^{a+1}=81\)
\(3^{a+1}=3^4\)
\(a+1=4\)
\(a=3\)
b) \(\left(x-1\right)^3=27\)
\(\left(x-1\right)^3=3^3\)
\(x-1=3\)
\(x=4\)
\(a,3^{a+1}=81\\ \Rightarrow3^{a+1}=3^4\\ \\ \Rightarrow a+1=4\\ \Rightarrow a=3.\\ b,\left(x-1\right)^3=27\\ \Rightarrow\left(x-1\right)^3=3^3\\ \Rightarrow x-1=3\\ \Rightarrow x=4.\)
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
\(x\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)
a) \(x\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
b) \(3x^2-27=0\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
c) \(\left(x-5\right)^2=x-5\)
\(\Leftrightarrow x^2-10x+25-x+5=0\)
\(\Leftrightarrow x^2-11x+30=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)
d) \(2\left(x+7\right)-x^2-7x=0\)
\(\Leftrightarrow2x+14-x^2-7x=0\)
\(\Leftrightarrow-x^2-5x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
e)\(7x\left(x-3\right)+2.3x=0\)
\(\Leftrightarrow7x^2-21x+6x=0\)
\(\Leftrightarrow7x^2-15x=0\)
\(\Leftrightarrow x\left(7x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)
#H
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
a) 3x = 81 = 34 => x = 4
b) (x+1)3 = 27 = 33
=> x + 1 = 3 => x = 2
c) 7x+2 = 27. x thuộc N => x + 2 thuộc N.
Mà 71 = 7 < 7x+2 = 27 < 72 = 49; nghĩa là 1 < x + 2 < 2
Do đó ko tồn tại x thỏa mãn
a) 3x = 81 = 34
=> x = 4
b) (x+1)3 = 27 = 33
=> x + 1 = 3
=> x = 2
c) 7x+2 = 27.
Vì \(x\in N\) nên \(x\in\phi\)