Giải pt: \(x=\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :))
\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)
\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)
\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)
\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)
\(VT=\sqrt{x+3}-\sqrt{x}=1\)
Dễ r -,-
Đk \(x\ge1\)
Áp dụng bđt cosi có
\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)
\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)
\(\Rightarrow VT\le VP\)
Dấu = xay ra khi.........\(x=\frac{1+\sqrt{5}}{2}\)(do \(x\ge1\))
*ĐK* : \(\hept{\begin{cases}x\ne0\\x-\frac{1}{2}\ge0\\1-\frac{1}{x}\ge0\end{cases}\Leftrightarrow x\ge1}\)(1)
\(x\ge0\)( điều kiện cần )
\(\left(1\right)\Leftrightarrow x\sqrt{x}=\sqrt{x^2-1}+\sqrt{x-1}\)
\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}\left(\sqrt{x+1}+1\right)\)
\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}.\frac{\left(x+1\right)-1}{\sqrt{x+1}-1}\)
\(\Leftrightarrow\sqrt{x}.\left(\sqrt{x+1}-1\right)=\sqrt{x-1}\)( vì \(x\ge1>0\))
\(\Leftrightarrow x\left(x+2-2\sqrt{x+1}\right)=x-1\)( vì \(x\ge1\)nên \(\sqrt{x+1}-1>0\))
\(\Leftrightarrow x^2+x+1-2x.\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-2x\sqrt{x+1}+\left(x+1\right)=0\)
\(\Leftrightarrow x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\Leftrightarrow x^2=x+1\)
\(\Leftrightarrow x^2-x-x=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)hoặc \(x=\frac{1-\sqrt{5}}{2}\)
\(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)( vì đk \(x\ge1\))
Vậy nghiệm của PT trên là \(x=\frac{1+\sqrt{5}}{2}\)
đk : \(x\ge1\)
\(\Leftrightarrow x\sqrt{x}=\sqrt{x^2-1}+\sqrt{x-1}\)
\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}\left(\sqrt{x+1}+1\right)\)
\(\Leftrightarrow x\sqrt{x}=\sqrt{x-1}.\frac{\left(x+1\right)-1}{\sqrt{x+1}-1}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)=\sqrt{x-1}\)( ví \(x\ge1>0\))
\(\Leftrightarrow x\left(x+2-2\sqrt{x+1}\right)=x-1\)( vì \(x\ge1\)nên \(\sqrt{x+1}-1>0\))
\(\Leftrightarrow x^2+x+1-2x.\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-2x\sqrt{x+1}+\left(x+1\right)=0\)( ta có thể lập pt 2 vế )
\(\Leftrightarrow x-\sqrt{x+1}=0\Leftrightarrow x=\sqrt{x+1}\Leftrightarrow x^2=x+1\)
\(\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)hoặc \(x=\frac{1-\sqrt{5}}{2}\)
\(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\)( vì đk \(x\ge1\))
Vậy nghiệm của pt là \(x=\frac{1+\sqrt{5}}{2}\)
hình như đề sai, ra nghiệm lẻ quá
cái đề của bà cũng lẻ tui nói sai đề bà có sửa đâu