-Ba đội máy san đất cùng làm một khối lượng công việc như nhau .Đội thứ nhất làm xong trong 6 ngày ,đội thứ 2 làm trong 10 ngày,còn đội thứ ba làm trong 8 ngày.Hỏi mỗi đội có bao nhiêu cái máy,biết đội thứ 2 ít hơn đội thứ ba 3 máy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x;y;z lần lượt là số máy lần lượt của 3 đội (x;y;z>0)
theo đề ta thấy: số máy tỉ lệ nghịch với số ngày hoàn thành công việc
=> x.4=y.6=z.8 và x-y=2
=>\(\frac{x}{6}=\frac{y}{4};\frac{y}{8}=\frac{z}{6}\)
=>\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}\)
áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{48}=\frac{y}{32}=\frac{z}{24}=\frac{x-y}{48-32}=\frac{2}{16}=0,125\)
suy ra: \(\frac{x}{48}=0,125\Rightarrow x=6\)
\(\frac{y}{32}=0,125\Rightarrow y=4\)
\(\frac{z}{24}=0,125\Rightarrow z=3\)
Vậy số máy 3 đội là: *đội thứ nhất : 6 máy
*đội thứ 2: 4 máy
*đội thứ 3: 3 máy
gọi số máy của đội thứ nhất, đội thứ hai, đội thứ ba là:
x,y,z ( x,y,z thuộc N*)
vì các máy có cùng năng xuất nên số máy và số ngày là hai đại lượng tỉ lệ nghịch , do đó ta có:
4x=6y=8z hay \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{8}}=\frac{x-y}{\frac{1}{4}-\frac{1}{6}}=\frac{2}{\frac{3-2}{12}}=\frac{2.12}{1}=24\)
do đó: \(\frac{x}{\frac{1}{4}}=24\Rightarrow x=24.\frac{1}{4}=6\)
\(\frac{y}{\frac{1}{6}}=24\Rightarrow x=24.\frac{1}{6}=4\)
\(\frac{z}{\frac{1}{8}}=24\Rightarrow x=24.\frac{1}{8}=3\)
tk:
c2:
gọi số máy của đội thứ nhất ,2 và 3 lần lượt là a,b,c
ta có: a/6 = b/10 = c/8 và c-b=3
=>6a = 10b = 8c =>a/(1/6)=b/(1/10)=c/(1/8) mà c-b=3
=>(c-b)/[(1/8)-(1/10)] =3/(1/40)=120
=>a=120/6=20 máy
b=120/10=12 máy
c=120/8=15 máy
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{c-b}{15-12}=1\)
Do đó: a=20; b=12; c=15
Do đội thứ nhất làm nhanh nhất nên số máy là lớn nhất và đội thứ 3 làm chậm nhất nên có số máy là ít nhất.
Gọi số máy của 3 đội lần lượt là x,y,z. Do càng nhiều máy thì thời gian hoàn thành công việc càng nhanh (thời gian hoàn thành công việc ít đi), nên số máy và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch, ta có:
x13=y14=z16
Lại có số máy đội thứ nhất nhiều hơn đội thứ 2 là 2 máy nên
x−y=2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x13=y14=z16=x−y13−14=2112=24
Do đó,
x=24.13=8, y=24.14=6, z=2416=4
Vậy đội 1 có 8 máy, đội 2 có 6 máy và đội 3 có 4 máy.
Gọi số máy của 3 đội lần lượt là x, y, z (x, y, z thuộc N*)
Theo đề bài, ta có: z - y = 3
Vì số máy và thời gian làm việc là hai đại lượng tỷ lệ nghịch nên:
\(6x=10y=8z\Rightarrow\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{8}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{8}}=\dfrac{z-y}{\dfrac{1}{8}-\dfrac{1}{10}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó
\(x=120.\dfrac{1}{6}=20\)
\(y=120.\dfrac{1}{10}=12\)
\(z=120.\dfrac{1}{8}=15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{20}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{c-b}{15-12}=1\)
Do đó: a=20; b=12; c=15