K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

a, Ta có ( x - 3 ) ( x + 2 ) > 0 nên => x - 3 và x + 2 là 2 số nguyên cùng dấu .

Do đó : hoặc : x - 3 > 0 và x + 2 > 0

=> x > 3 và x > -2 => x > 3

Hoặc : x - 3 < 0 và x + 2 < 0

=> x < 3 và x < -2 => x < -2

Vậy với x < -2 hoặc x > 3 sẽ thỏa ( x - 3 ) ( x + 2 ) > 0

b, Ta có : ( 2x - 4 ) ( x + 4 ) < 0 nên suy ra 2x - 1 và x + 4 là 2 số nguyên khác dấu .

Do đó : hoặc 2x - 4 < 0 và x + 4 > 0 => x < 3 và x <  -4

Hoặc : 2x - 4 > 0 và x + 4 < 0 => x > 2 và x < -4

Trường hợp này không xảy ra . Vậy với -4 < x < 2 hay x là một trong 5 số -3 , -2 , -1 , 0 , 1 sẽ thỏa ( 2x - 4 ) ( x + 4 ) < 0 

 

 

2 tháng 6 2016

nhầm nhé Sorry leu

Ta có : ( x - 3 ) ( x + 2 ) > 0 nên suy ra x - 3 và x + 2 là 2 số nguyên cùng dấu .

Do đó : hoặc : x - 3 > 0 và x + 2 > 0

=> x > 3 và x > -2 => x >3

Hoặc : x - 3 < 0 và x + 2 < 0

=> x < 3 và x < -2 => x < -2

Vậy với x < -2 hoặc x > 3 sẽ thỏa ( x - 3 ) ( x + 2 ) >0

Ta có ( 2x - 4 ) ( x + 4 ) < 0 nên suy ra 2x - 1 và x + 4 là 2 số nguyên khác dấu

Do đó : hoặc 2x - 4 < 0 và x + 4 > 0 => x< 3 và x > -4

Hoặc : 2x - 4 > 0 và x + 4 < 0 => x > 2 và x < -4

Trường hợp này không xảy ra . Vậy với -4 < x < 2 hay x là 1 trong 5 số : -3 , -2, -1 , 0 , 1 sẽ thỏa ( 2x - 4 ) ( x + 4 ) <0

 

 

 

22 tháng 5 2018

27 tháng 7 2023

a

\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)

b

\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)

c

\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)

a: =>(2x+15)(x^2+4)=0

=>2x+15=0

=>2x=-15

=>x=-15/2

b; =>(x-2)(5x-3)=0

=>x=2 hoặc x=3/5

c: =>(x+3)(2-x)=0

=>x=2 hoặc x=-3

30 tháng 10 2021

a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)

b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

16 tháng 10 2023

a) \(6x^2-72x=0\)

\(6x\left(x-12\right)=0\)

\(6x=0\) hoặc \(x-72=0\)

*) \(6x=0\)

\(x=0\)

*) \(x-12=0\)

\(x=12\)

Vậy \(x=0;x=12\)

b) \(-2x^4+16x=0\)

\(-2x\left(x^3-8\right)=0\)

\(-2x=0\) hoặc \(x^3-8=0\)

*) \(-2x=0\)

\(x=0\)

*) \(x^3-8=0\)

\(x^3=8\)

\(x=2\)

Vậy \(x=0;x=2\)

c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)

\(x^2-5x-x^2+6x-9=0\)

\(x-9=0\)

\(x=9\)

d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(x^3-6x^2+12x-8-x^3+8=0\)

\(-6x^2+12x=0\)

\(-6x\left(x-2\right)=0\)

\(-6x=0\) hoặc \(x-2=0\)

*) \(-6x=0\)

\(x=0\)

*) \(x-2=0\)

\(x=2\)

Vậy \(x=0;x=2\)

29 tháng 11 2021

ảnh lỗi r ạ

29 tháng 11 2021

Lỗi rùi

22 tháng 12 2023

a: ĐKXĐ: \(x\notin\left\{4\right\}\)

x2-3x=0

=>x(x-3)=0

=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Thay x=0 vào A, ta được:

\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)

Thay x=3 vào A, ta được:

\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)

b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)

\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)

c: Đặt P=A:B

ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)

P=A:B

\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)

\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)

Để P là số nguyên thì \(2x⋮x-4\)

=>\(2x-8+8⋮x-4\)

=>\(8⋮x-4\)

=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)

22 tháng 12 2023

Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t

Ta có x² - 3x = 0 suy ra x x (x - 3) = 0

x = 0; x = 3

Với x = 0 suy ra A = 5/4 v

Với x = 3 suy ra A = 2

Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)

Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8

x - 4 = 8 suy ra x = 4

x - 4 = 4 suy ra 2x = 0 loại

x - 4 = -1 suy ra x = 3 thỏa mãn

x - 4 = 1 suy ra x = 5 loại

x - 4 = 4 - 2x = 8 thỏa mãn

x - 4 = 8 suy ra x = 12 thỏa mãn