Tìm a thuộc Z để
a/ A=\(\frac{a+7}{5-a}>0\)
b/ B=\(\frac{4-a}{a-2}< 0\)
giúp mk bài này vs nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.
Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:
\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)
b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2 (1)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
Ban tham khao :Câu hỏi của Nguyễn Phùng Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath
1a) x.y = -15 = (-3).5 = (-5).3 = (-1).15 = (-15).1
Vậy x = { -3;5;-5;3;-1;15;-15;1}
Với y tương ứng = { 5;-3;3;-5;15;-1;1;-15}
b) x.y = -13 = (-1).13 = (-13).1
Vậy x = { -1;13;-13;1}
Với y tương ứng = { 13;-1;1;-13}
c) x.y = 85 = 1.85 = 85.1 = 5.17 = 17.5
Vậy x = {1;85;85;1;5;17;17;5}
Với y tương ứng = { 85;1;1;85;17;5;5;17}
2;3: Tự làm
a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )
Để A > 0 thì có 2 trường hợp :
+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)
Để A < 0 thì có 2 trường hợp :
+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)
b) Để A thuộc Z thì x -7 ⋮ x + 4
<=> x + 4 - 11 ⋮ x + 4
Vì x + 4 ⋮ x + 4
=> 11 ⋮ x + 4
=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }
=> x thuộc { -3; 7; -5; -15 }
Vậy...........
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
|x+2|<3
\(\Rightarrow-3\le x+2\le3\)3
\(\Rightarrow-1\le x\le1\)
\(\Rightarrow x=-1;0;1\)
a, A > 0 <=> \(\begin{cases}a+7>0\\5-a>0\end{cases}\) =>\(\begin{cases}a>-7\\a< 5\end{cases}\) (TM)
hoặc\(\begin{cases}a+7< 0\\5-a< 0\end{cases}\) =>\(\begin{cases}a< -7\\a>5\end{cases}\) (loại)
Vậy -7 < a < 5 thì A > 0
b, B < 0 <=> \(\begin{cases}4-a< 0\\a-2>0\end{cases}\) => \(\begin{cases}a>4\\a>2\end{cases}\) => a > 4
hoặc \(\begin{cases}4-a>0\\a-2< 0\end{cases}\) => \(\begin{cases}a< 4\\a< 2\end{cases}\) => a < 2
Vậy a > 4 hoặc a < 2 thì B < 0
a.
\(\frac{a+7}{5-a}>0\)
=> a + 7 và 5 - a cùng dấu.
Vậy \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)
Chúc bạn học tốt