Mọi người biết thì chỉ cho mk với nha
Tìm số nguyên tố p sao cho p2 +44 là số nguyên tố.
Giúp mk với nha ,thanks.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại
- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)
Nếu p>3 , p nguyên tố => p có dạng 3k+1 hoặc 3k+2 (k nguyen dương)
- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại
- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại
=> với mọi p>3 đều không thỏa mãn
Vậy p=3 là giá trị thỏa mãn cần tìm
a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2 (k thuộc N*)
Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số ( loại )
Vậy p = 3
Nếu b>0:
-b là số âm hiển nhiên:
-b<0<b.
Nếu b<0:
-b sẽ là số dương,ta có:
b<0<-b.
Nếu b=0,ta có:
b=-b=0
Chúc em học tốt^^
so nguyen to ko the la so chan=>la so le. ma so le -so chan = so le. xet thi co 3^2 la so le ma +44 moi la so nguyen to . co the thu voi cac truong hop khac nhung ko thoa man de bai. dap so bang 3 do .
Ta có : p = 3 => p + 2 = 5 mà 5 là số nguyên tố => p + 2 là số nguyên tố
p + 4 = 7 mà 7 là số nguyên tố => p + 4 là số nguyên tố
Vậy p = 3 thì p + 2 và p + 4 là số nguyên tố .
+) Với p khác 3 . Khi đó , p chia cho 3 ta chỉ có 2 khả năng .
- Trường hợp 1 : p = 3k+ 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 )
Mà : p + 2 > 3 => 3 ( k + 1 ) > 3 => 3 ( k + 1 ) là hợp số hay p + 2 là hợp số ( Vô lý )
- Trường hợp 2 : p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 )
Mà : p + 4 > 3 => 3 ( k + 2 ) > 3 => p + 4 là hợp số ( Vô lý )
Vậy p = 3
a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 \(⋮\) 1 và 3.
p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 \(⋮\)1 và 5.
b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 \(⋮\) 1 và 11
p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 \(⋮\) 1 và 19
a) p = 1 vì 1 + 2 = 3 , 3 > 1 và 3 ⋮ 1 và 3.
p = 1 vì 1 + 4 = 5 , 5 > 1 và 5 ⋮ 1 và 5.
b) p = 1 vì 10 + 1 = 11, 11 > 1 và 11 ⋮ 1 và 11
p = 5 vì 5 + 14 = 19 , 19 > 1 và 19 ⋮ 1 và 19
Với \(p=3\), ta có: \(3\) là số nguyên tố và \(p^2+44=3^2+44=53\) cũng là số nguyên tố.
Vậy \(p=3\) thỏa mãn.
* Với \(p\ne3\), vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:
- Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)
Ta có:
\(p^2+44=\left(3k+1\right)^2+44=\left(3k+1\right).\left(3k+1\right)+44\)
\(=3k.\left(3k+1\right)+1.\left(3k+1\right)+44=9k^2+3k+3k+1+44\)
\(=9k^2+6k+45=3.\left(3k^2+2k+15\right)\) chia hết cho 3
Vậy trường hợp này loại
- Trường hợp 2: p chia 3 dư 2 => \(p=3k+2\left(k\in N\right)\)
Ta có:
\(p^2+44=\left(3k+2\right)^2+44=\left(3k+2\right).\left(3k+2\right)+44\)
\(=3k.\left(3k+2\right)+2.\left(3k+2\right)+44=9k^2+6k+6k+4+44\)
\(=9k^2+12k+48=3.\left(3k^2+4k+16\right)\) chia hết cho 3
Vậy trường hợp này loại
Tóm lại, chỉ có p = 3 là thỏa mãn đề bài.
* Với p = 3, ta có: 3 là số nguyên tố và p^2 + 44 = 3^2 + 44 = 53 cũng là số nguyên tố
Vậy p = 3 thỏa mãn
Với p \(\ne\) 3, vì p là số nguyên tố nên p không chia hết cho 3. Ta xét các trường hợp sau:
Trường hợp 1: p chia 3 dư 1 => \(p=3k+1\left(k\in N\right)\)
Ta có:
p^2 + 44 = (3k+1)^2 + 44 = (3k+1).(3k+1) + 44
= 3k.(3k+1) + 1.(3k+1) + 44 = 9k^2 +3k + 3k + 1 + 44
= 9k^2 + 6k + 45 = 3.(3k^2+2k+15) chia hết cho 3
Vậy trường hợp này loại
- Trường hợp 2: p chia 3 dư 2 => \(p=3k^2+2\left(k\in N\right)\)
Ta có:
p^2+44=(3k+2)2+44=(3k+2).(3k+2)+44
=3k.(3k+2)+2.(3k+2)+44=9k^2+6k+6k+4+44
=9k^2+12k+48=3.(3k^2+4k+16) chia hết cho 3
Vậy trường hợp này loại.
Tóm lại, chỉ có p=3 là thỏa mãn đề bài