Cho a,b > 0 . CM a^2b - 3ab + ab^2 + 1 > 0 . Dấu bằng xảy ra khi nào ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
Áp dụng \(\dfrac{\left(x+y\right)^2}{4}\ge xy\):
\(2\sqrt{ab}\left(a+b\right)\le\dfrac{\left(2\sqrt{ab}+a+b\right)^2}{4}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\dfrac{1}{4}\)
<=> \(\sqrt{ab}\left(a+b\right)\le\dfrac{1}{8}\)
<=> \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) => 64ab(a+b)2 \(\le1\)
Dấu "=" <=> a = b = \(\dfrac{1}{4}\)
câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)2 +3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0
câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)2 +3b2/2 .a=0 và b=0
a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )
\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )
\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
1. Ta có: \(a-b+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}\)
\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge\dfrac{4}{b+1}+b\)(1)
lại có: \(\dfrac{4}{b+1}+b+1\ge4\)
\(\dfrac{4}{b+1}+b\ge3\)(2)
Từ (1),(2) ta có:\(a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\\b+1=\dfrac{4}{b+1}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
2. Ta có\(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3\)
\(\Leftrightarrow2a^3+1\ge12ab-12b^2\)
\(\Leftrightarrow2a^3+1-12ab+12b^2\ge0\)
\(\Leftrightarrow2a^3-3a^2+1+3\left(a-2b\right)^2\ge0\)
\(\Leftrightarrow\left(2a+1\right)\left(a-1\right)^2+3\left(a-2b\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\a-2b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\)
Áp dụng cô-si cho ba dương ta có : \(x+y+z\ge3\sqrt[3]{xyz}\)
Suy ra : \(a^2b+ab^2+1-3ab\ge3\sqrt[3]{a^2b.ab^2.1}-3ab=3ab-3ab=0\)
Dấu bằng xảy ra khi \(a^2b=ab^2=1\Rightarrow a=b=1\)