giúp mk vs ạk..
Cho tam giác ABC, có ma= c. CMR: sinA=2sin(B-C)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, phản ví dụ:
Tam giác ABC vuông tại A với \(AB=1;AC=\sqrt{3};BC=2\)
Khi đó \(AM=\dfrac{1}{2}BC=1=AB\) thỏa mãn yêu cầu bài toán
Góc \(B=60^0;A=90^0\)
Khi đó: \(sinA=1\) trong khi \(2sin\left(B-A\right)=2sin\left(-30\right)=-1\)
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : \(sinA=\frac{BK}{AB}\) ; \(sinB=\frac{AH}{AB}\) ; \(sinC=\frac{AH}{AC}\)
\(\Rightarrow\frac{AB}{sinC}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\) ; \(\frac{AC}{sinB}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{c}{sinC}=\frac{b}{sinB}\) (1)
Lại có : \(BK=sinC.BC\Rightarrow\frac{BC}{sinA}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{sinC.BC}=\frac{AB}{sinC}\)
\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\) (2)
Từ (1) và (2) ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\) (Đpcm)
a)
xét tam giác MAB và tam giác MKC có:
MA=MK(gt)
MB=MC(gt)
AMB=KMC( 2 góc đđ)
suy ra ABM=BCK= 90 độ suy ra BC_|_CK
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
xét tam giác ABC ta có góc BMA=góc MAC +góc ACM ( góc ngoài của tam giác).
=> góc MAC = góc ABC- góc ACB (tam giác ABM cân vì AB=AM với AM là đường trung tuyến=> góc ABM= góc AMB).
=>SABC=\(\frac{AM.AC.sinMAC}{2}\)=\(\frac{AB.AC.sinA}{2}\)
mà SABC=SACM => sin A =sin(B-C)
=> ĐPCM