K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2016

a. \(\frac{7}{15}< \frac{7}{14}=\frac{1}{2};\frac{15}{23}>\frac{15}{30}=\frac{1}{2}\text{ hay }\frac{7}{15}< \frac{1}{2}< \frac{15}{23}\)

Vậy \(\frac{7}{15}< \frac{15}{23}\).

b. \(x=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13x=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(y=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13y=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

Vì \(13^{17}+1>13^{16}+1\) nên \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)

Mà 1 = 1 => \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\text{ hay }13x< 13y\)

=> x < y.

27 tháng 5 2016

ơn nha

18 tháng 8 2015

Áp dụng công thức:

Nếu a<b=>a/b<(a+k)/(b+k)          (k thuộc N*)

Ta có:\(13^{16}+1x=\frac{13^{16}+1}{13^{17}+1}

Bn nhân cả x và y cho 13 nha

Ta có 10x=1+ 12 / 13^17+1   và 10 y= 1+12 / 13x^16+1

Do 12 / 13^17+1   <   12 / 13^16+1

=>10x<10y

=>x<y

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

29 tháng 10 2016

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

Ta thấy:

\(13^{16}+1< 13^{17}+1\)

\(\Rightarrow\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

hay \(A>B\)

Vậy \(A>B.\)

10 tháng 8 2016

Ta có: \(\frac{a}{b}< \frac{a+c}{b+c}\)

=> \(B=\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+1+12}{13^{17}+1+12}=\frac{13^{16}+13}{13^{17}+13}=\frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\frac{13^{15}+1}{13^{16}+1}=A\)

Vậy: \(A>B\) 

 

 

30 tháng 6 2016

B > A

Mk nghĩ thế thuilolang

5 tháng 5 2016

Ta có: \(13A=1+\frac{12}{13^{16}+1};13B=1+\frac{12}{13^{17}+1}\)

Do \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\). Nên \(13A>13B\) 

Vậy \(A>B\)

8 tháng 4 2018

Ta có : 

\(13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=\frac{13^{16}+1}{13^{16}+1}+\frac{12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=\frac{13^{17}+1}{13^{17}+1}+\frac{12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

Vì \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\) nên \(1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\) hay \(13A>13B\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

8 tháng 4 2018

Phùng Minh Quân ơi tớ cảm ơn nhưng tớ tính máy tính ra A = B ạ ( ko có ý gì đâu )

2 tháng 4 2015

      TA CÓ   CÔNG THỨC \(\frac{a}{b}

2 tháng 4 2015

\(A=\frac{13^{15}+1}{13^{16}+1}