K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

H(x) = \(\left(3x^3-2x^3-x^3\right)+\left(5x^2-5x^2\right)-4x+8\)

\(8-4x\)

Giả sử H(x) = 0

=> 8 - 4x = 0

=> 4.(2 - x) = 0

=> 2 - x = 0

=> x = 2

26 tháng 5 2016

\(H\left(x\right)=3x^3-4x+5x^2-2x^3+8-5x^2-x\)

\(H\left(x\right)=\left(3x^3-2x^3-x^3\right)+\left(5x^2-5x^2\right)-4x+8\)

\(H\left(x\right)=6-4x\)

Xét H(x)=0

\(\Rightarrow8-4x=0\)

\(\Rightarrow4x=8\)

\(\Rightarrow x=2\)

Vậy nghiệm của H(x) là 2

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

a: f(x)=3x^4+2x^3+6x^2-x+2

g(x)=-3x^4-2x^3-5x^2+x-6

b: H(x)=f(x)+g(x)

=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6

=x^2-4

f(x)-g(x)

=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6

=6x^4+4x^3+11x^2-2x+8

c: H(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

NV
17 tháng 4 2022

\(F\left(x\right)=3x^4+2x^3+6x^2-x+2\)

\(G\left(x\right)=-3x^4-2x^3-5x^2+x-6\)

17 tháng 4 2022

F(x)=-x+2+5x2+2x4+2x3+x2+x4

F(x)= ( 5x2+x2) + ( 2x4 +x4)  +2x3-x+2

F (x) = 6x2 + 3x4 +2x3-x+2

 

G(x) = -x2+x3+x-6-3x3-4x2-3x4

G (x) = ( -x2 -4x2) + ( x3 -3x3) -3x4 +x-6

G (x) =  -5x2 - 2x3 -3x4 +x-6

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

a: P(x)=x^3-x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3

N(x)=P(x)-Q(x)

=x^3-x^2+x+2+x^3-x^2+x-1

=2x^3-2x^2+2x+1

c: M(x)=3

=>M(x) ko có nghiệm

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

a: f(x)=3x^4+2x^3+6x^2-x+2

g(x)=-3x^4-2x^3-5x^2+x-6

f(x)+g(x)

=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6

=x^2-4

f(x)-g(x)

=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6

=6x^4+4x^3+11x^2-2x+8

4 tháng 5 2023

\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)

4 tháng 5 2023

`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`

`= (2x^3 -x^3)+x^2+(-x+3x) +5`

`= x^3 +x^2 + 2x+5`

`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`

`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`

`= -x^3 -x^2+3x+10`

`b,M(x)=P(x)+Q(x)`

`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5+(-x^3)  -x^2+3x+10`

`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`

`= 5x+15`

`N(x)=P(x)-Q(x)`

`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`

`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`

`=2x^2 -x-5`