K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)

              = -b^3+3ab^2a-3ba^2+a^3

             = (a-b)^3

b/ tương tự ta dùng hằng đẳng thức để chứng minh

5 tháng 7 2016

a) a - b = - (b - a) = (-1)*(b - a)

=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3

b) -(a + b) = (- a - b)

=> (-1)2 * (a + b)2 = (-a - b)2

=> (-a -b)2 = (a + b)2

a) (a-b)^3=-(b-a)^3

\(Taco:-\left(b-a\right)^3\)

=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)

\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)

\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)

\(=-\left(a+b\right)\left(-a-b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

6 tháng 6 2020

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

18 tháng 9 2019

\(a.\left(a-b\right)^3=-\left(b-a\right)^3\)

\(\Leftrightarrow\left(a-b\right)^3=\left(a-b\right)^3\)

Học tốt!

18 tháng 9 2019

a) \(-\left(b-a\right)^3=-\left(b-a\right).\left(b-a\right)^2\)

\(=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)^3\)

b) \(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)=\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2\)

21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

9 tháng 7 2019

BĐT đồng bậc nên chuyển vế thẳng tiến ạ!:D Em ko chắc đâu nhá!

a) \(BĐT\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge a^3b^3+a^3b^3\)

\(\Leftrightarrow a^2b^4-a^3b^3+a^4b^2-a^3b^3\ge0\)

\(\Leftrightarrow a^2b^3\left(b-a\right)+a^3b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3b^2-a^2b^3\right)\ge0\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = b hoặc tồn tại một số bằng 0.

b) \(BĐT\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng do \(a^2+ab+b^2=a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3}{4}b^2=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\) )

Đẳng thức xảy ra khi a = b

10 tháng 7 2019

NGUYỄN THỊ QUỲNH kcj ạ. Em cũng ko chắc đâu