hai đường thẳng xx' và yy' cặt nhau tại điểm O tạo thành 4 góc, trong đó tổng 2 góc XOy và x'Oy' là 248 độ. số đo góc xOy' là
giải chi tiết giùm mìnhhh nkaaHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi bạn nha . Mk chứng minh lỗi nha
Vì đường thằng \(xx'\)cắt \(yy'\)tại \(O\)
\(\Rightarrow xOx'=180^o\)
Vì \(xx'\)là 1 đường thẳng .
[ \(Ox\)đối với \(Ox'\)]
Vì vậy nên \(xOy+yOx'=180^o\)( cắt tại O )
Ta có:
xx' và yy' cắt nhau tại O -> góc xOy' đối đỉnh với góc x'Oy
mà góc xOy'=63 độ (đối đỉnh thì bằng nhau)
Vậy góc x'Oy= 63 độ
ta có: xx' và yy' cắt nhau tại O
=> góc xOy' = góc x'Oy = 63 độ ( đối đỉnh)
=> góc x'Oy = 63 độ
\(\widehat{xOy}+\widehat{x'Oy=180^0}\) (Vì \(\widehat{xOy}\) và \(\widehat{x'Oy}\) là hai góc kề bù)
\(\widehat{xOy}-\widehat{x'Oy}=40^0\)
a.\(\widehat{xOy}=\left(180^0+40^0\right):2=110^0\)
\(\widehat{x'Oy'}=\widehat{xOy}=110^0\) ( 2 góc đối đỉnh)
b. \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-110^0=70^0\) (2 góc kề bù)
\(\widehat{xOy'}=\widehat{x'Oy}=70^0\) ( 2 góc đối đỉnh)
Mik xin lỗi, mik đọc sai đềMik giải lại nhé
\(xOy+x'Oy'=248^0\)
mà \(xOy=x'Oy'\) (2 góc đối đỉnh)
\(\Rightarrow xOy=x'Oy'=\frac{248^0}{2}=124^0\)
\(xOy+xOy'=180^0\) (2 góc kề bù)
\(124^0+xOy'=180^0\)
\(xOy'=180^0-124^0\)
\(xOy'=56^0\)
Chúc bạn học tốt
\(xOy+x'Oy'=248^0\)
mà \(xOy=x'Oy'\) (2 góc đối đỉnh)
\(\Rightarrow xOy=x'Oy'=\frac{248^0}{2}=124^0\)
Vậy \(x'Oy'=124^0\)
Chúc bạn học tốt