với giá trị nào của x thì x^2–2x<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x< 0\Leftrightarrow x\left(x-2\right)< 0\)
Do đó x và x-2 khác dấu
TH1: \(\hept{\begin{cases}x>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x< 2\end{cases}\Leftrightarrow}0< x< 2}\)
TH2:\(\hept{\begin{cases}x< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>2\end{cases}\Leftrightarrow}2< x< 0}\) (vô lí)
=>0<x<2 thì x2-2x<0
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)
\(-x^2+2x+5=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4< 0\left(\forall x\right)\)
=>\(\frac{-x^2+2x-5}{x^2-mx+1}\le0\left(\forall x\right)=>x^2-mx+1>0\left(\forall x\right)\)
\(\Rightarrow\Delta< 0\Leftrightarrow m^2-4< 0=>-2< m< 2\)
X2- mx+1 <0
\(\Delta\)= (-m)2 -4.1.1
\(\Delta\)= m -4
để BPT trên có nghiệm khi \(\Delta\)<0
Tức là: m-4<0
m<4
Vậy khi m<4 thì BPT luôn nhỏ hơn o với mọi x
a)
Với A=0
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
với A<0
\(\Rightarrow x\left(x-4\right)< 0\)
\(th1\orbr{\begin{cases}x< 0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x>4\end{cases}\Leftrightarrow4< x< 0\left(vl\right)}\)
\(th2\orbr{\begin{cases}x>0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< 4\end{cases}\Leftrightarrow0< x< 4\left(tm\right)}\)
\(\Leftrightarrow0< x< 4\Leftrightarrow x\in\left\{1;2;3\right\}\)
Với A>0
\(\Rightarrow x\left(x-4\right)>0\)
\(th1\orbr{\begin{cases}x>0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x>4\end{cases}}\Leftrightarrow x>4\)
\(th2\orbr{\begin{cases}x< 0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\Leftrightarrow x< 0\)
b)
Với B=0
\(\Rightarrow\frac{x-3}{x}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\Rightarrow x=3\\x=0\left(l\right)\end{cases}}\)
vậy x=3 thì B = 0
Với B < 0
\(\Rightarrow\frac{x-3}{x}< 0\)
\(th1\orbr{\begin{cases}x-3>0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x< 0\end{cases}\Leftrightarrow3< x< 0\left(vl\right)}\)
\(th2\orbr{\begin{cases}x-3< 0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x>0\end{cases}\Leftrightarrow0< x< 3\left(tm\right)\Leftrightarrow x\in\left\{1;2\right\}}\)
Với B > 0
\(th1\orbr{\begin{cases}x-3>0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x>0\end{cases}\Leftrightarrow x>3}\)
\(th2\orbr{\begin{cases}x-3< 0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 0\end{cases}\Leftrightarrow x< 0}\)
1
\(x^2\)-2x<0
<=> x(x-2)<0
<=>\(\begin{cases}x>0\\x-2< 0\end{cases}\)<=>\(\begin{cases}x>0\\x< 2\end{cases}\)
Vậy để \(x^2\)-2x<0 khi 0<x<2