K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.\sqrt{20}.3+9}}}\)=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-\left|\sqrt{20}-3\right|}}\)=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)=\(\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)=\(\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}.1+1}}\)

=\(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)=\(\sqrt{\sqrt{5}-\left|\sqrt{5}-1\right|}\)=\(\sqrt{\sqrt{5}-\sqrt{5}+1}\)=\(\sqrt{1}\)=1

12 tháng 8 2023

 chữ sấu v

 

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.\sqrt{20}.3+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-5.\sqrt{5}.1+1}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(=\sqrt{1}=1\)

23 tháng 7 2017

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

23 tháng 7 2017

\(B=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=\sqrt{6+2\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(B=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(B=\sqrt{3}+1\)

14 tháng 6 2018

1 bài thôi nhé, tui còn phải xem World Cup :vv

\(\sqrt{x^4-4x+4}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{5}+1\)

\(\Leftrightarrow x^4-4x+3=0\)

\(\Leftrightarrow x^4+2x^3+3x^2-2x^3-4x^2-6x+x^2+2x+3=0\)

\(\Leftrightarrow x^2\left(x^2+2x+3\right)-2x\left(x^2+2x+3\right)+\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)

Vì: \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\)

=> \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) (thỏa mãn)

Vậy pt có nghiệm x = 1

p/s: đkxđ là x thuộc R nên tui k ghi vào :v

15 tháng 6 2018

cảm ơn nhiều

11 tháng 7 2018

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3}+9}}=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\) \(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{3+2\sqrt{3}+1}=\sqrt{3}+1\)

4 tháng 10 2020

a) \(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-2\sqrt{5}+3}\)

\(=\sqrt{3-\sqrt{3}-\sqrt{5}}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

7.

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+2\sqrt{4.3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{(\sqrt{4}+\sqrt{3})^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10(2+\sqrt{3})}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-2.5\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{(5-\sqrt{3})^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5(5-\sqrt{3})}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

24 tháng 6 2018

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-6\sqrt{20}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\\ =\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}\\ =\sqrt{1}=1\)

\(B=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12+1+2\sqrt{12}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\\ =\sqrt{6+2\sqrt{3+1-2\sqrt{3}}}\\ =\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\sqrt{6+2\sqrt{3}-2}\\ =\sqrt{3+1+2\sqrt{3}}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+4\sqrt{3}}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+2\right)^2}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-10\sqrt{3}}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\\ =\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\\ =\sqrt{4+\sqrt{25}}=\sqrt{4+5}=\sqrt{9}=3\)

\(D=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\\ \text{Ta có }:\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)^2\\ =3+\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+3-\sqrt{5}\\ =6-2\sqrt{9-5}=6-2\sqrt{4}=6-4=2\\ \Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{2}\\ \Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)