Trong không gian với hệ tọa độ Oxyz, cho 4 điểm \(A\left(3;3;2\right);B\left(4;-3-3\right);C\left(2;1;1\right);D\left(1;2;1\right)\).
a. Chứng minh rằng A, B, C không thẳng hàng và viết phương trình mặt phẳng (P) đi qua 3 điểm A, B, C
b. Tìm trên mặt phẳng (P) tất cả những điểm E sao cho \(S_{\Delta ODE}\) nhỏ nhất.
a. Từ giả thiết ta có \(\overrightarrow{AB}=\left(1;-6;-5\right)\) và \(\overrightarrow{CA}=\left(1;2;1\right)\)
Suy ra :
\(\left|\overrightarrow{AB;}\overrightarrow{CA}\right|=\left(\left|\begin{matrix}-6&-5\\2&1\end{matrix}\right|;\left|\begin{matrix}-5&1\\1&1\end{matrix}\right|;\left|\begin{matrix}1&-6\\1&2\end{matrix}\right|\right)\)
Từ đó do \(\left[\overrightarrow{AB;}\overrightarrow{CA}\right]\ne\overrightarrow{0}\) nên A, B, C không thẳng hàng và mặt phẳng (P) đi qua A,B,C có vecto pháp tuyến \(\overrightarrow{n}=\frac{1}{2}\left[\overrightarrow{AB;}\overrightarrow{CA}\right]=\left(2;-3;4\right)\)
Suy ra (P) có phương trình:
\(2\left(x-3\right)-3\left(y-3\right)+4\left(z-2\right)=0\)
hay :
\(2x-3y+4z-5=0\)
b. Do \(OD=\sqrt{1^2+2^2+1^2}=\sqrt{6}\) nên \(S_{\Delta ODE}\) bé nhất khi và chỉ khi \(d\left(E;OD\right)\) bé nhất.
\(\overrightarrow{OD}.\overrightarrow{n}=1.2.\left(-3\right)+1.4\) và\(1.2+2\left(-3+1.4-5\ne0\right)\) nên \(OD\backslash\backslash\left(P\right)\). Bởi vậy tập hợp tất cả những điểm \(E\in\left(P\right)\) sao cho \(d\left(E;OD\right)\) bé nhất là OD trên mặt phẳng (P)
Gọi d là đường thẳng đi qua O và vuông góc với (P). Khi đó d có phương trình :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\)
Gọi M là hình chiếu của O(0;0;0) trên (P). Khi đó tọa độ của M thỏa mãn hệ phương trình :
\(\begin{cases}\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\\2x-3y+4z-5=0\end{cases}\)
Giải hệ ta được : \(M\left(\frac{10}{29};\frac{-15}{29};\frac{20}{29}\right)\)
Vậy tập hợp tất cả các điểm E cần tìm là đường thẳng đi qua M, song song với OD, do đó có phương trình dạng tham số :
\(\begin{cases}x=\frac{10}{29}+t\\y=-\frac{15}{29}+2t\\z=\frac{20}{29}+t\end{cases}\) \(\left(t\in R\right)\)