Cho 1 góc xBy ,từ A trên tia Bx (Akhác B) vẽ AH vuông góc với By(H thuộc By) và kẻ AD vuông góc với phân giác góc xBy tại D .Cho O là tâm của đường tròn đường kính AB .Chứng minh:OD vuông góc AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BADH
BDA = 90* ( AD vuông Bz tại D )
BHA = 90* ( AH vuông By tại H )
Nên BDA = BHA = 90*
Vậy tứ giác BADH nội tiếp đường tròn tâm I đường kính AB với I là trung điểm AB
b) Ta có DBH = DBO ( BD là phân giác xBy)
Mà DBO = ODB ( tam giác OBD cân tại O có OB = OD = R)
Nên DBH = ODB
Mà 2 góc này ở vị trí so le trong
Suy ra OD // BH
bạn có thể vẽ hình được không zạ hiii mà nếu không thì thui tại hình mik vẽ không ra
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE
=góc ABE+90 độ-góc HAB
=90 độ
=>HE vuông góc AC
=>HE//CD
a: Xet (O) có
ΔAHB nội tiếp
AB là đường kính
Do đo: ΔAHB vuông tại H
=>AH vuông góc với BC
AB^2=BC*BH
b: ΔOAD cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOD
Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)