CHUNG MINH RANG
(a+b+c)^2 >hoac=3(ab+bc+ca)
giup minh moi minh dang can gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+........+7^{2016}\)
\(A=7\left(1+7+7^2+7^3+........+7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\)
\(A=7\left[\left(1+7+7^2+7^3\right)+........+\left(7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\right]\)
\(A=7\left[\left(1+7+7^2+7^3\right)+........+7^{2012}\left(1+7+7^2+7^3\right)\right]\)
\(A=7\left[400+........+7^{2012}.400\right]\)
\(A=7.400\left(1+7^4+7^8+7^{12}+......+7^{2012}\right)⋮400\)
Vì \(20^2=400\) nên \(A⋮20^2\left(dpcm\right)\)
Có: \(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}\)
\(\Leftrightarrow\hept{\begin{cases}ab=9\\a^2=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\\frac{81}{b^2}=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\27=b^3\end{cases}}\)
\(\Leftrightarrow a=b=3\)
(a+b+c)2\(\ge\) 3(ab+bc+ca) (*)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\) 3ab+3bc+3ca
=>a2+b2+c2\(\ge\) ab+bc+ca
nhân 2 vào cho 2 vế ta được:
2a2+2b2+2c2\(\ge\) 2ab+2bc+2ca
=> (a+b)2+(b+c)2+(c+a)2\(\ge\) 0 (đúng)
=> (*) đúng
Mày nhìn cái chóa j