K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIKE và ΔIML có

\(\widehat{IKE}=\widehat{IML}\)

\(\widehat{KIE}=\widehat{MIL}\)

Do đó: ΔIKE\(\sim\)ΔIML

b: Xét ΔMIL và ΔMKE có 

\(\widehat{IML}=\widehat{KME}\)

\(\widehat{ILM}=\widehat{KEM}\)

Do đó: ΔMIL\(\sim\)ΔMKE

Suy ra: MI/MK=ML/ME

hay \(MI\cdot ME=MK\cdot ML\)

12 tháng 7 2023

Mày nhìn cái chóa j

21 tháng 5 2016

thấy câu hỏi của b lâu r. bạn cần nữa k mình giải

12 tháng 7 2023

Mày nhìn cái chóa j

22 tháng 11 2016

a/ Xét tam giác AHB và tam giác AHC có:

AB = AC (GT)

AH: cạnh chung

góc HAB = góc HAC (GT)

=> tam giác AHB = tam giác AHC (c.g.c)

b/ Ta có: tam giác AHB = tam giác AHC (câu a)

=> góc B = góc C (2 góc tương ứng)

c/ Ta có: tam giác AHB = tam giác AHC (câu a)

=> BH = HC (2 cạnh tương ứng) (1)

=> góc AHB = góc AHC (2 góc tương ứng) (2)

Mà góc AHB + góc AHC = 1800

=> góc AHB = AHC = 900 (3)

Từ (1);(2);(3) => AH là trung trực của BC

Xét tam giác AHB và tam giác EHC có:

góc AHB = góc EHC (đối đỉnh)

BH = CH (đã chứng minh)

HE = HA (GT)

=> tam giác AHB = tam giác EHC

mk xin lỗi nhé, khuya rồi mà mai mk phải đi hc sớm

nên giờ mk giải đến đây, mai mk giải tiếp nhé

23 tháng 11 2016

Mk giải tiếp nhé:

e/ Ta có: tam giác AHB = tam giác EHC (câu d)

=> \(\widehat{BAH}\)=\(\widehat{HEC}\) (2 góc tương ứng)

Mà góc BAH, góc HEC ở vị trí so le trong

=> AB//CE (đpcm)

f/ Xét tam giác AHC và tam giác BHE có:

góc AHC = góc BHE (đối đỉnh)

AH = HE (GT)

BH = HC (đã chứng minh)

=> tam giác AHC = tam giác BHE (c.g.c)

Ta có: \(\widehat{ABH}\)=\(\widehat{ECH}\) (vì tam giác ABH = tam giác CHE) (1)

Ta lại có: \(\widehat{HBE}\)=\(\widehat{ACH}\)(vì tam giác AHC = tam giác BHE) (2)

Từ (1), (2) => \(\widehat{ABH}\)+\(\widehat{HBE}\)=\(\widehat{ECH}\)+\(\widehat{ACH}\)

=> \(\widehat{ABE}\)=\(\widehat{ACE}\) (đpcm)

h/ Ta có: tam giác AHC = tam giác BHE (câu f)

=> \(\widehat{CAH}\)=\(\widehat{HEB}\) (2 góc tương ứng)

Mà góc CAH, góc HEB ở vị trí so le trong

=> BE//AC (đpcm)

g/ Xét tam giác BAC và tam giác BEC có:

BC: cạnh chung

AB = CE (vì tam giác ABH = tam giác ECH)

AC = BE (vì tam giác AHC = tam giác BHE)

=> tam giác BAC = tam giác BEC (c.c.c)

=>\(\widehat{ABC}\)=\(\widehat{EBC}\) (2 góc tương ứng)

=> BC là phân giác của góc ABE

a: Xét ΔAMD có

AI vừa là đường cao, vừa là trung tuyến

=>ΔAMD cân tại A

=>AB là phân giác của góc MAD(1) và AM=AD

Xét ΔAME có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAME cân tại A

=>AC là phân giác của góc MAE(2); AM=AE

=>AE=AD
b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có

DB=CE

góc DBH=góc ECK

=>ΔDBH=ΔECK

=>HB=CK

b: Xet ΔABH và ΔACK có

AB=AC
góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>góc AHB=góc AKC

c: Xét ΔADE có AB/BD=AC/CE
nên BC//DE

=>HK//ED

d: Xét ΔAHE và ΔAKD có

AH=AK

HE=KD

AE=AD

=>ΔAHE=ΔAKD

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên MCI^=NCI^(hai góc tương ứng)

hay BCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

BCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔCAB vuông tại A và ΔCAK vuông tại A có 

CA chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)

Suy ra: CA=CK(hai cạnh tương ứng)

Ta có: CN+NK=CK(N nằm giữa C và K)

CM+MB=CB(M nằm giữa C và B)

mà CK=CB(cmt)

và CN=CM(ΔCNI=ΔCMI)

nên NK=MB

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(NK=\dfrac{BC}{2}\)

mà BC=KC(cmt)

nên \(NK=\dfrac{CK}{2}\)

mà điểm N nằm giữa hai điểm C và K

nên N là trung điểm của CK(đpcm)

c) Xét ΔAMB và ΔEMC có

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong

nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)

a: góc A=180-60=120 dộ

=>góc EAB=60 độ=góc BAI

Xet ΔEAB và ΔIAB có

góc EAB=góc IAB

AB chung

EA=IA

=>ΔEAB=ΔIAB

=>BE=BI

=>AB là trung trực của IE

Chứng minh tương tự, ta được: AC là trung trực của IF

b: góc EAB=góc FAC=60 độ

=>góc EAB+góc BAI=góc FAC+góc IAC

=>góc EAI=góc FAI

Xét ΔEAI và ΔFAI có

AI chung

góc EAI=góc FAI

AE=AF

=>ΔEAI=ΔFAI

=>EI=FI

=>ΔIFE cân tại I

=>góc EIF=2*góc AIE

ΔEAI cân tại A

=>góc AIE=(180-60-60)/2=30 độ

=>góc EIF=60 độ

=>ΔIEF đều

c: góc AIE=góc AIF

=>AI là phân giác của góc EIF
mà ΔEIF đều

nên AI vuông góc EF

a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

IM=IN

Do đó: ΔIMC=ΔINC

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)