cho ΔABC vuông cân tại A , trung tuyến AM. E ϵ BC , BH vuông góc với AE , CK vuông góc với AE (H,K ϵ A,E) . Chứng minh ΔMHK cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà
=>
Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà
=>
=> Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ;=>
=> Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
u bai nay lop 7 ma
Bạn tham khảo bài giải của mình ở link sau nhé,chỉ cần gạch bỏ BH = AK là xong : olm.vn/hoi-dap/question/779590.html
Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Trần Khắc Nguyên Bảo16 tháng 5 2016 lúc 21:32
1.Ta có : Tam giác ABC là tam giác vuông cân.
=>AB=AC
Mặt khác có:
Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]
=> BH=AK [đpcm]
Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì
Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]
AH=CK [ câu a ]
=>MH=MK
Ta có: [AM là đường cao]
Từ => HMK vuông
Kết hợp =>MHK là tam giác vuông cân.
Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
1.Ta có : Tam giác ABC là tam giác vuông cân.
=>AB=AC
Mặt khác có:
Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]
=> BH=AK [đpcm]
Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì
Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]
AH=CK [ câu a ]
=>MH=MK
Ta có: [AM là đường cao]
Từ => HMK vuông
Kết hợp =>MHK là tam giác vuông cân.
TICK CHO MK NHA CHÚC BẠN HỌC GIỎI.
MK BT BÀI NÀY MK LÀM BẠN TICK CHO MK NHA