Giải hệ phương trình :
\(\begin{cases}3x^2+4x+2\ln\left(3x+1\right)=2y\\3y^2+4y+2\ln\left(3y+1\right)=2x\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x>-0,5,y>-0,5\). lấy (i) và (ii) trừ nhau , ta được
\(x^2+3x+ln\left(2x+1\right)-y^2-3y-ln\left(2y+1\right)=y-x\left(1\right)\)
\(\Leftrightarrow x^2+4x+ln\left(2x+1\right)=y^2+4y+ln\left(2y+1\right)\left(2\right)\)
Xét hàm số \(f\left(t\right)=t^2+4t+\ln\left(2t+1\right)\) trên khoảng \(\left(-\frac{1}{2};+\infty\right)\), ta có :
\(f'\left(t\right)=2t+4+\frac{2}{2t+1}>0\) với mọi \(\in\left(-\frac{1}{2};+\infty\right)\)
vậy hàm số f(t) đồng biến trên khoản \(\left(-\frac{1}{2};+\infty\right)\) . Từ đó (1) xảy ra khi và chỉ khi x=y . Thay vào phương trình (i) được \(x^2+2x+ln\left(2x+1\right)=0.\)(3) . Dễ thấy x=0 thỏa mãn(3) . xét hàm số g(x)=\(x^2+2x+ln\left(2x+1\right)\). Ta có
\(g'\left(x\right)=2x+2+\frac{2}{2x+1}>0\veebar x>-\frac{1}{2}\)
vậy hàm g(x) đồng biến \(\left(-\frac{1}{2};+\infty\right)\), suy ra x=0 là nghiệm duy nhất của (3) . Hệ phương trình ban đầu có nghiệm duy nhất (x;y)=(0;0)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Từ \(\left(6x+4y-1\right)\sqrt{x+y+1}=\left(2x+2y+1\right)\sqrt{3x+21y}\)
\(\Leftrightarrow\left(6x+4y-1\right)^2\left(x+y+1\right)=\left(2x+2y+1\right)^2\left(3x+2y\right)\)
\(\Leftrightarrow\left(2x+y-1\right)\left(12x^2+20xy+12x+8y^2+8y-1\right)=0\)
\(\Leftrightarrow x=\frac{-y+1}{2}\) thay vào pt(1)
\(\frac{y^2+2y-35}{4}=0\Leftrightarrow\left(y-5\right)\left(y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=5\\y=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\Leftrightarrow x=-2\\y=-7\Leftrightarrow x=4\end{cases}}\)
Phương trình sau <=> \(\left(1+3x+2x^2\right)\left(1+3x\right)=\left(1+3y+2x^2\right)\left(1+3y\right)\)
<=> \(\left(1+3x\right)^2+2x^2\left(1+3x\right)-\left(1+3y\right)^2-2x^2\left(1+3y\right)=0\)
<=> \(\left[\left(1+3x\right)^2-\left(1+3y\right)^2\right]+\left[2x^2\left(1+3x\right)-2x^2\left(1+3y\right)\right]=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y\right)+2x^2\left(3x-3y\right)=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y+2x^2\right)=0\)
<=> \(\orbr{\begin{cases}x=y\\2x^2+3x+3y+2=0\end{cases}}\)
Với x = y ta có hệ : \(\hept{\begin{cases}x-5y=-20\\x=y\end{cases}}\Leftrightarrow x=y=5\)
Với \(2x^2+3x+3y+2=0\)ta có hệ: \(\hept{\begin{cases}x-5y=-20\\2x^2+3x+3y+2=0\end{cases}}\) hệ này đơn giản em tự giải tiếp!
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Điều kiện : \(x>-\frac{1}{3};y>-\frac{1}{3}\). Lấy hai phương trình của hệ trừ nhau :
\(3x^2+4x+2\ln\left(3x+1\right)-3y^2+4y+2\ln\left(3y+1\right)=2y-2x\left(1\right)\)
\(\Leftrightarrow3x^2+6+2\ln\left(3x+1\right)=3y^2+6y+2\ln\left(3y+1\right)\left(2\right)\)
Xét hàm số \(f\left(t\right)=3t^2+6t+2\ln\left(3t+1\right)\) trên khoảng \(\left(-\frac{1}{3};+\infty\right)\)
Ta có : \(f'\left(t\right)=6t+6+\frac{6}{3t+1}>0\), với mọi \(t\in\left(-\frac{1}{3};+\infty\right)\)
Vậy hàm số \(f\left(t\right)\) đồng biên trên khoảng \(\left(-\frac{1}{3};+\infty\right)\). Từ đó (2) xảy ra khi và chỉ khi x = y. Thay vào hệ phương trình đã cho, ta được :
\(3x^2+4x+2\ln\left(3x+1\right)=2x\)
\(\Leftrightarrow3x^2+2x+2\ln\left(3x+1\right)=0\) (3)
Dễ thấy x = 0 thỏa mãn (3)
Xét hàm số \(g\left(x\right)=3x^2+2x+2\ln\left(3x+1\right)\)
Ta có : \(g'\left(x\right)=6x+2+\frac{5}{3x+1}>0\) với mọi \(x>-\frac{1}{3}\)Vậy hàm số \(g\left(x\right)\) đồng biến trên \(\left(-\frac{1}{3};+\infty\right)\)suy ra x = 0 là nghiệm duy nhất của (3)Hệ phương trình ban đầu có nghiệm (x;y) = (0;0)