Tìm hai số khi biết tổng chúng bằng 12 và số thứ nhất gấp hai lần số thứ hai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số cần tìm là a,b
Theo đề, ta có:
a+b=50 và 3a=3(b+10)
=>a+b=50 và 3a-3b=30
=>a+b=50 và a-b=10
=>a=30; b=20
Bài 1:
Gọi hai số tự nhiên cần tìm là a,b
Số thứ nhất gấp 4 lần số thứ hai nên a=4b(1)
Tổng của hai số là 100 nên a+b=100(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a=4b\\a+b=100\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4b+b=100\\a=4b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=100\\a=4b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=\dfrac{100}{5}=20\\a=4\cdot20=80\end{matrix}\right.\)
Bài 2:
Gọi hai số cần tìm là a,b
Hiệu của hai số là 10 nên a-b=10(4)
Hai lần số thứ nhất bằng ba lần số thứ hai nên 2a=3b(3)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=10\\2a=3b\end{matrix}\right.\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=10\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b=20\\2a-3b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-2b-2a+3b=20\\2a=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\2a=3\cdot20=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)
Bài 3:
Gọi số tự nhiên cần tìm có dạng là \(\overline{ab}\left(a\ne0\right)\)
Chữ số hàng chục bé hơn chữ số hàng đơn vị là 3 nên b-a=3(5)
Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới lập ra và số ban đầu là 77 nên ta có:
\(\overline{ab}+\overline{ba}=77\)
=>\(10a+b+10b+a=77\)
=>11a+11b=77
=>a+b=7(6)
Từ (5) và (6) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=5\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a+b+a+b=5+7\\a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=12\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=6\\a=7-6=1\end{matrix}\right.\)
Vậy: Số tự nhiên cần tìm là 16
Gọi x là số thứ nhất
Số thứ hai là: 50 - x
Số thứ nhất sau khi tăng thêm 3: x + 3
Số thứ hai sau khi tăng thêm 10: 50 - x + 10 = 60 - x
Theo đề bài ta có phương trình:
x + 3 = 3.(60 - x)
x + 3 = 180 - 3x
x + 3x = 180 - 3
4x = 177
x = 177/4
Vậy số thứ nhất là 177/4, số thứ hai là 63/4
Gọi số thứ hai là x. Vậy số thứ nhất là 3x.
Vì tổng của chúng bằng 32 nên ta có phương trình x+3x=32 suy ra x=8.
Vậy số thứ nhất là 24 và số thứ hai là 8
gọi số thứ nhất là a, số thứ hai là b (a,b thuộc Z và khác 0)
Theo đề bài ta có phương trình: a+b=100 và 2a=5(b+5) => a=(5b+25)/2
Thay vào phương trình thứ nhất tìm được b=25
=> a=75
Tổng số phần bằng nhau:
\(1+2=3\)
Số thứ nhất là:
\(12\div3\times1=4\)
Số thứ hai là:
\(12-4=8\)
Chúc bạn học tốt
Số thứ nhất: |___|
Số thứ hai: |___|___|
Tổng số phần bằng nhau là: 1+2=3 (phần)
Số thứ nhất là: 12.1:3=4
Số thứ hai là: 12.2:3=8